汽車專業(yè)畢業(yè)設(shè)計(jì)外文翻譯--飛輪儲(chǔ)能系統(tǒng)的集成性能分析——elph車輛_第1頁(yè)
已閱讀1頁(yè),還剩5頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  Integration and Performance Analysis of Flywheel Energy Storage System in an ELPH Vehicle</p><p>  I. INTRODUCTION</p><p>  Conventional Internal Combustion Engine (ICE) vehicles bear

2、 the disadvantages of poor fuel economy and environmental pollution. Basis of poor fuel economy are (i) Operation of engine in lower efficiency region during most of the time in a drive cycle and (ii) Dissipation of vehi

3、cle kinetic energy during braking . Electric battery operated vehicles have some advantages over the</p><p>  ICE driven vehicles, but their short range is a major lacuna in their performance. The shortcomin

4、gs of both of these can be overcome by using a Hybrid Electric Vehicle (HEV). An HEV comprises conventional propulsion system with an on-board Rechargeable Energy Storage System (RESS) to achieve better fuel economy than

5、 a conventional vehicle as well as higher range as compared to an Electric Vehicle. HEVs prolong the charge on RESS by capturing kinetic energy via regenerative braking, and some HEVs</p><p>  An HEV's e

6、ngine is smaller and may run at various speeds, providing higher efficiency. Reference </p><p>  suggests that HEVs allow fuel economy and reduced emissions compared to conventional ICE vehicles by:</p>

7、;<p>  1. Allowing the engine to stop under vehicle stop condition,</p><p>  2. Downsizing the engine for same peak load requirements, as the motor will assist the engine for</p><p>  suc

8、h higher loads, and</p><p>  3. Allowing regenerative braking, not possible in conventional vehicle. In urban drive conditions,</p><p>  about 30% of the fuel can be saved through regenerative b

9、raking because of the frequent stop and</p><p>  go conditions .</p><p>  Series and Parallel hybrids are the two major configurations of the HEVs. Even in Parallel Configuration of Hybrid Vehic

10、les, there are several possibilities in which an arrangement between the engine, motor and transmission can be made to achieve the desired performance from the vehicle. In general there are two methods to couple the ener

11、gy of the engine and motor namely, (i) Speed Coupling, and (ii) Torque Coupling. In Speed Coupling the speeds of engine and motor are</p><p>  added in appropriate fractions to achieve the final speed of the

12、 drive, whereas in Torque Coupling the torque from the engine and motor are summed up in Torque Coupler, which can be either an epicyclic gear train or simply the rotor of the electric machine (motor). In latter case the

13、 rotor of the electric machine is integrated with the shaft from the engine through a clutch. The parallel hybrid is considered for the present analysis because of its significant advantages over the series hybrid, s<

14、/p><p>  requirements, and modest power densities . To overcome these shortcomings, research activities have focused upon other alternatives of Energy Storage System (ESS). FESS is a prominent candidate for ESS

15、 applications in HEVs. Flywheels in particular offer very high reliability and cycle life without degradation, reduced ambient temperature concerns, and is free of environmentally harmful materials .Flywheels offer many

16、times higher energy storage per</p><p>  kilogram than conventional batteries, and can meet very high peak power demands. Power density, which is a crucial parameter for ESS in HEVs, of an FESS is much highe

17、r as compared to a chemical battery. Deeper depth of discharge, broader operating temperature range adds to the advantages of using an FESS over batteries. The FESS employed for the present analysis is an ‘Integrated Fly

18、wheel Energy Storage System with Homopolar Inductor Motor/Generator and High-</p><p>  Frequency Drive’ . The use of integrated design has various benefits over other contemporary FESS designs. Some of these

19、 advantages are reduced system weight, lower component count, reduced material costs, lower mechanical complexity, and reduced manufacturing cost.</p><p>  II. SYSTEM DESCRIPTION</p><p>  The ar

20、rangement used for analysis consists of an ‘Electrically Peaking Hybrid Electric propulsion system’ that has a parallel configuration . Through the use of a parallel configuration the engine has been downsized as compare

21、d to the engine required for a similar conventional ICE vehicle. A small engine of power approximately equal to the average load power is used in the model. An AC induction motor is used to supply the excess power requir

22、ed by the peaking load. The electric machine can also </p><p>  acceleration pedal and brake pedal. With the electrically peaking principle, two control strategies for the drive have been used . The first on

23、e is called ‘MAXIMUM BATTERY SOC’ control strategy, which in particular aims at maintaining a particular range of SOC in the battery at any instant. In this SOC range, the battery is having maximum efficiency and thus, t

24、he best performance of the vehicle which is employing a chemical battery, can be achieved through this strategy. Under this strategy the </p><p>  best performance of the chemical battery, is employed in the

25、 analyzed model comprising FESS, so that a direct comparison can be drawn over the performance level of an FESS as compared to a chemical battery, working in its best efficiency range. The other control strategy develope

26、d is called ‘ENGINE TURN-ON AND TURNOFF’ control strategy. Under this, the engine is turned on and off depending upon the instantaneous SOC of the RESS. This strategy can be used during highway driving. An integrated fly

27、</p><p>  The simulation results are mathematically treated and are combined with the results of the practical testing as well as the simulated results of the FESS considered . A SIMULINK model (Fig. 2) is u

28、sed to perform these mathematical operations for two particular drive cycles namely (i) FTP-75 Urban Drive, and (ii) FTP-75 Highway Drive. The figure illustrates the various components of the SIMULINK model, which are us

29、ed to perform various operations, mentioned in the following text.</p><p>  飛輪儲(chǔ)能系統(tǒng)的集成性能分析——ELPH車輛</p><p><b>  1、引言</b></p><p>  傳統(tǒng)的內(nèi)燃機(jī)(ICE)車輛具有貧困燃油經(jīng)濟(jì)性和環(huán)境污染的缺點(diǎn)。燃油經(jīng)濟(jì)性差的基礎(chǔ)是

30、:(一)引擎運(yùn)轉(zhuǎn)過(guò)程中,在驅(qū)動(dòng)器周期及(ii)車輛損耗動(dòng)能在制動(dòng)過(guò)程中大部分時(shí)間在低效率的地區(qū)。電動(dòng)電動(dòng)車駕駛的車輛在冰面上的一些優(yōu)勢(shì),但他們的短距離是一大空白,其性能研究。這些可以通過(guò)使用一個(gè)缺點(diǎn)克服,兩者在混合動(dòng)力電動(dòng)汽車(HEV)。戊型肝炎病毒由一個(gè)具有板上充電儲(chǔ)能系統(tǒng)(快速膨脹法),提供比傳統(tǒng)汽車的燃油經(jīng)濟(jì)性更好以及更高的遠(yuǎn)程常規(guī)推進(jìn)系統(tǒng)相比,一個(gè)電動(dòng)車。混合電動(dòng)汽車通過(guò)捕捉動(dòng)能延長(zhǎng)對(duì)快速膨脹法通過(guò)再生制動(dòng)充電,有的還使用混合電

31、動(dòng)汽車通過(guò)發(fā)電機(jī)(男/ G)的充電的快速膨脹法的發(fā)動(dòng)機(jī)來(lái)發(fā)電。</p><p>  一種混合動(dòng)力汽車的發(fā)動(dòng)機(jī)更小,可以運(yùn)行在不同的速度,提供更高的效率。混合電動(dòng)汽車的參考建議,使燃油經(jīng)濟(jì)性和降低排放比傳統(tǒng)內(nèi)燃機(jī)車輛:1。讓發(fā)動(dòng)機(jī)停止車輛停止?fàn)顟B(tài)下,2。瘦身負(fù)荷要求,發(fā)動(dòng)機(jī)同樣的高峰期,由于汽車發(fā)動(dòng)機(jī)的負(fù)荷將協(xié)助這些較高,3。允許再生制動(dòng),而不是在傳統(tǒng)的車輛可能。在城市駕駛條件下,約30%的燃料可以節(jié)省通過(guò)再生制動(dòng)

32、,因?yàn)榻?jīng)常走走停停的條件。</p><p>  串并聯(lián)混合動(dòng)力車的混合電動(dòng)汽車的兩個(gè)主要的配置。即使在混合動(dòng)力汽車并行配置,其中有一個(gè)引擎之間的安排,電機(jī)和傳動(dòng),可實(shí)現(xiàn)從車輛所需的性能幾種可能性。一般有兩種方法來(lái)夫婦的發(fā)動(dòng)機(jī)和電動(dòng)機(jī)的能量,即(一)速度耦合,以及(ii)扭矩耦合。在汽車發(fā)動(dòng)機(jī)轉(zhuǎn)速和速度的耦合的分?jǐn)?shù)將在適當(dāng)?shù)膶?shí)現(xiàn)發(fā)動(dòng)機(jī)和電動(dòng)機(jī)的扭矩最后在驅(qū)動(dòng)器的速度,而轉(zhuǎn)矩耦合的總結(jié),在轉(zhuǎn)矩耦合器可用于任何一個(gè)行星

33、齒輪火車或簡(jiǎn)單的異步電機(jī)(馬達(dá)轉(zhuǎn)子)。在后一種情況下,在電機(jī)轉(zhuǎn)子集成了從發(fā)動(dòng)機(jī)軸通過(guò)離合器。并聯(lián)式混合動(dòng)力被認(rèn)為是由于其具有明顯的優(yōu)勢(shì)分析目前在系列雜交,比如降低排放,提高效率,更簡(jiǎn)單的配置和更好的性能。在分析中考慮的配置是'預(yù)傳動(dòng)扭矩耦合并聯(lián)混合動(dòng)力列車'。用于板載快速膨脹法有不同的候選人。到目前為止鉛酸電池為主,因?yàn)轶w積小,容易獲得,成本低的產(chǎn)業(yè)。然而,電池的缺點(diǎn),例如有限的生命周期,保養(yǎng)和調(diào)節(jié),</p>

34、<p>  要求,而溫和的功率密度。為了克服這些缺點(diǎn),研究活動(dòng)主要集中在能源儲(chǔ)存系統(tǒng)(ESS)的其他選擇。鼻內(nèi)鏡在混合電動(dòng)汽車是一個(gè)突出的候選人ESS的應(yīng)用。飛輪提供特別的高可靠性和循環(huán)退化,失去生活,降低環(huán)境溫度的關(guān)注,并免費(fèi)對(duì)環(huán)境有害的材料。飛輪提供了許多倍,比傳統(tǒng)電池的能量?jī)?chǔ)存每公斤,可滿足高峰電力需求非常高。功率密度,這是一個(gè)ESS的關(guān)鍵參數(shù)的混合電動(dòng)汽車的鼻內(nèi)鏡手術(shù),大大提高相比,化學(xué)電池。更深的深度放電,寬工作

35、溫度范圍內(nèi)增加了對(duì)電池的使用鼻內(nèi)窺鏡手術(shù)的優(yōu)點(diǎn)。目前分析的鼻內(nèi)鏡采用的是一個(gè)'高調(diào)速'綜合飛輪儲(chǔ)能系統(tǒng)的單極感應(yīng)電動(dòng)機(jī)/發(fā)電機(jī)。整體設(shè)計(jì)采用現(xiàn)代的設(shè)計(jì)比其他各種利益的適應(yīng)癥。這些優(yōu)勢(shì)有些是降低系統(tǒng)重量,降低元件數(shù)量,降低材料成本,降低機(jī)械復(fù)雜性,并降低了制造成本。</p><p><b>  2、系統(tǒng)描述</b></p><p>  分析所用的電調(diào)峰安

36、排包括混合動(dòng)力電動(dòng)推進(jìn)系統(tǒng),有一個(gè)平行配置一'。通過(guò)使用并行配置的發(fā)動(dòng)機(jī)已被縮減為1比同類傳統(tǒng)內(nèi)燃機(jī)汽車所需的引擎。小型發(fā)動(dòng)機(jī)的功率約等于平均負(fù)載功率是在模型中使用。交流異步電動(dòng)機(jī)是一種用于電力供應(yīng)過(guò)剩的調(diào)峰負(fù)荷要求。該電機(jī)還可以吸收發(fā)動(dòng)機(jī)的功率,而超出負(fù)載功率比峰值低。這種權(quán)力,隨著再生制動(dòng)功率,用于收取的適應(yīng)癥維持在一個(gè)合理水平的國(guó)家充電(SOC)的。圖。 1顯示了整車說(shuō)明預(yù)傳輸扭矩耦合結(jié)構(gòu)原理圖,以及該驅(qū)動(dòng)器的車輛運(yùn)行的其

37、他主要成分是由車輛控制器管理。它發(fā)出的控制信號(hào),電機(jī)控制器,發(fā)動(dòng)機(jī)控制器(油門)和鼻內(nèi)鏡取決于控制器的控制策略和輸入信號(hào)?;旧陷斎胄盘?hào)是從加速踏板和剎車踏板。隨著電力調(diào)峰的原則,兩個(gè)驅(qū)動(dòng)器控制策略已被使用。第一個(gè)是所謂'最大限度地延長(zhǎng)電池的SOC控制的戰(zhàn)略,特別是旨在維護(hù)電池在任何瞬間的SOC的特定范圍。在此范圍內(nèi)的SOC,電池是有最高的效率,因此,該車輛是雇用一個(gè)化學(xué)電池的最佳性能,可以通過(guò)這一戰(zhàn)略的實(shí)現(xiàn)。根據(jù)這項(xiàng)戰(zhàn)略的引擎

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論