版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 附錄</b></p><p> 附錄一 外文資料原文及翻譯</p><p><b> A1.1原文</b></p><p> Retrospect and Prospect of Excitation Systems of Large Size Turbogenerators</p
2、><p> From ELECTRICITY 2002 NO.4</p><p> By Du xingyou</p><p> Member of Scientific and Technological</p><p><b> 都興有</b></p><p> 國(guó)家電力公司科學(xué)技術(shù)委員
3、會(huì)委員</p><p> [Abstract] This paper briefs the developmental course,manufacturing and applications,as well as future prospect of excitation systems of large size turbogenerators in China,emphatically expounds
4、 the advantages of self-excitation systems with potential source rectifiers and matters needing to be noted during dissemination and application of them .</p><p> [Keywords] thermal power plant;large size t
5、urbogenerator;excitation system;self-shunt excitation </p><p> In the late 1970s,the perfection works of indigenous large size thermal power generating units were started,the main objects of perfection were
6、 the original 125 MW,200 MW and 300 MW generating units,the excitation systems of these units,except for a few units which employed direct current (d.c) exciters,were mainly equipped with excites,which included excitatio
7、n power source(permanent magnet machine,alternating current(a.c.) rotating exciter, rectifier cubicle),slip ring, brush, brush holder, as</p><p> 1.1 Harbin Electric Machinery Works Ltd.Co</p><p&
8、gt; All the original 200 MW generators employed exciters; the imported type 300 MW generators were equipped with exciters in the initial stages, and could be equipped with self-shunt excitation system later; the importe
9、d type 600 MW generators were first equipped with brushless excitation, and can also be equipped with self-shunt excitation system now too. Since these three excitation systems are available, it is very convenient for cu
10、stomers to choose any kind excitation system to equip the recentl</p><p> 1.2 Shanghai Electric MachineryWorks Ltd. Co.</p><p> Both the original double water inner cooling 125 MW (135 MWnow)
11、and 300 MW generators were equipped with exctlers; the imported type 300 MW and 600 MW generators were equippedwith brushless excitation originally, and can be equipped with self-shunt excitation system now. Hence three
12、types of excitation systems are available.</p><p> 1.3 Dongfang Electric Machinery Ltd. Co.</p><p> All the original 200 MW generators were equipped with exciters, the 300 MW generators were e
13、quipped with exciters or self-shunt excitation system; the 600 MW generators with Japanese Hitachi technology introduced employ self-shunt excitation system. The 125 (135) MW generators made recently can be equipped with
14、 exciters and self-shunt excitation system.</p><p> 1.4 Beljing Turbogenerator Ltd. Co.</p><p> The original 200 MW generators also employ exciters; the 330 MW generators jointly produced with
15、 France based Alsthom Corp. are equipped with brushless excitation system, the domestication scheme of generators has passed the appraisal and examination, viewing from marketing, serf-shunt excitation can be provided as
16、 well.</p><p> 2.1 Material quality etc. problems of slip ring</p><p> Material quality of slip ring, ventilation, carbon powder, brush holder and its constant pressure spring etc. problems wo
17、rried about in the past have all been solved. Now all slip rings can be made with outer diameter not exceeding 400 mm and linear speed not more than 70 m/s; the constant pressure spring needed for brush holder has been s
18、olved and can be plugged in and pulled out safely and conveniently during operation; the quality of brushes can satisfy the requirements, but some</p><p> generators were completed with imported parts.</
19、p><p> 2.2 Selection and use of exciters and brushlese exchationsystem</p><p> As a result of raising component quality of indigenous rectifiers and improving reliability of a.c. exciters and per
20、manent-magnet machines, both exciters and brushless excitation system may basically be selected and used in parallel.</p><p> 2.3 De.excitation switch</p><p> Poor arc suppression performance
21、of breaks and ineffectiveness of mechanism etc. problems existed with the old generation de-excitation switches. While certain debugging experiences were gained at home and manufacturing technologies were imported later,
22、 de-excitation switches yet couldn't be spread and applied throughout the country. Consequently most of 300 MW and 600 MW generators still employ the imported d.c. de-excitation switches when selecting and using self
23、-shunt excitation system.</p><p> The imported type 300 MW and 600 MW generators employed brushless excitation without de-excitation switches in the early stage. The original de-excitation switches in excit
24、er system of 125 MW and 300 MW double water inner cooling generators were ever short-circuited in Shandong and this experience passed appraisal. But when employing exciter scheme and serf-shunt excitation system, the d.c
25、. de-excitation switches are still finalized to equip in the design, for time would be delayed without the s</p><p> Hebei Province had some experiences in employing "Hebei SKM-2O0 automatic de-excitat
26、ion and slip over-voltage protection device" in exciter system of 200 MW generators and installing de-excitation switches on a.c. side, and these experiences passed appraisal.The 660 MW generators imported from Ger
27、many based Siemens Corp. in Hebei Hanfeng Power Plant employ inverters and de-excitation switches on a.c. side. It is reported that they have been running normally up to now. As for the de-excitation r</p><p&g
28、t; 2.4 Brushless excitation</p><p> Since the brushless excitation technology was introduced to China, the former ministries of Machinery Building and Water Resources & Electric Power placed the comple
29、ted condensers and fusible cut-outs as the key research subjects, which were successfully tested and appraised on the 300 MW generators in Shanghai Wujing Power Plant, but the domestically-mede completed products were no
30、t formed, sothey still rely on imports. As for the components of thyristors, used in both brushless excitation and </p><p> were simply laid out, were used for 600 MW supercritical pressure turbogenerators
31、of ABB Corp. in Shanghai Shidongkou No.2 Power Plant.</p><p><b> 2.5 AVR</b></p><p> In the past, neither the AVRs completed by indigenous manufacturers nor the AVRs completed with
32、 imported technologies for 300 MW and 600 MW generators were advanced. The extreme sample was the runaway accident of 200 MW generating unit in Shanxi Datong Power Plant. It was found through investigation that the unit
33、was starting to connect to the power network at that time. When the load rose to 170 MW, the AVR failed to follow to regulate, resulting in fall-out of synchronism, which induced instab</p><p> The afore me
34、ntioned AVRs may be applied to the various size generators and three kinds of excitation systems (exciters, brushless excitation and self-shunt excitation). Exciters and brushless excitation belong to rotating excitation
35、 system, hence all are completed by turbogenerator manufacturers. If self-shunt excitation system is employed, then except slip rings, brushes and brush holders which will be supplied accordingly by generator manufacture
36、rs, excitation systems may find more alternative</p><p> jointly produced) in Shandong Zouxian Power Plant were provided by ABB Corp., some indigenous 300 MW turbogenerators selected ABB”s products and some
37、 indigenous 300 MW turbogenerators selected US based Roles Royals Crop”s products.</p><p> 2.6 Background of developing self-shunt excitation system </p><p> In the past all the large size the
38、rmal power generating units employed exciters, since the manufacturing technologies of WH”s 300 MW and 600 MW generating units were introduced, China began to produce brushless exciation systems. They have been operating
39、 smoothly with little maintenance up to now, but both these two excitation schemes employ rotating exciter in which rotating part is the key part needing attention and regular maintenance as compared with self-shunt exci
40、tation system.</p><p> China EPRI,alter investigating, put forward the report Feasibility Analyses of Adopting Self-excitation System for Large Size Turbogenerator. Though studying the impacts of self-shunt
41、 excitation system on transient phasor and transient voltage stability of small grid with large generating units and large grid system, as well as the impacts of self-shunt excitation system on relay protection, they con
42、cluded that, "it is feasible to disseminate and apply serf-shunt excitation system in large size </p><p> (1) The reliability of self-shunt excitation system is high, since there isn't rotating par
43、t in it;</p><p> (2) Considering the stability requirement of transient phasor, it is feasible to disseminate and apply self-shunt excitation system in large size turbogenerators. When the high voltage exit
44、s of rare generators employing self-shunt excitation system are three-phase short-circuited, at lower ceiling voltage ratio of field-focing (K=2) in calculation, corresponding to 1.6 times of that using international cal
45、culation method), the stability level of transient phasor is basically the same in comparis</p><p> excitation system with 0.35 sec. of time constant. With the ceiling voltage ratio of field forcing raised,
46、 the advantages of self-shunt excitation system will become more obvious.</p><p> (3) Viewing from the transient voltage stability requirement of power system, it is feasible too to disseminate and apply se
47、lf-shunt excitation in large size turbogenerators, which may not only keep the transient voltage stability level of power system,but also raise the transient voltage stability level of power system,even may make the inst
48、able transient voltage of power system to become stable under some conditions.</p><p> (4) Applying self-shunt excitation system in large size turbogenerators, not only won't influence the reliable oper
49、ation of main relay protection, and can ensure correct operation of backup protection and clear of fault.</p><p> (5) Since there isn't coaxial rotating exciter in the generator with self-shunt excitati
50、on system, the torsional vibration mode of turbogenerator is reduced, thus decreasing the possibility of shaft system damage resulting from torsional vibration.</p><p> (6) The selection of parameters of se
51、lf-shunt excitation system is more flexible than that of conventional excitation system, the requirements may be raised in light of the features of different power networks.</p><p> It should be indicated t
52、hat, the dissemination and application of serf-shunt excitation sysem in large size turbogenerators in China ever underwent a considerable endless route, from feeling worried about the self-shunt excitation system, thru
53、technical studying and discussing, importing (such as importing the products of Roles Royals and ABB etc. corps.), digesting, domestication, demonstration, to disseminating and applying etc. courses. Currently, almost al
54、l the 300 MW unit projects have adop</p><p> It should be explained additionally that, when the self-shunt excitation system is adopted, since the shaft system is shortened, the 300 MW turbogenrator set may
55、 be arranged transversely with the front part of steam turbine directed at boiler house, thus the piping system etc. equipment will be laid out more conveniently, and the costs of civil works and equipment installation w
56、ill thus be reduced. Some turbogenerator sets are even arranged obliquely with front of steam turbine directed at boile</p><p> In addition, it is not proper to regard the excitation system only as an appur
57、tenance of generator, which is closely bound up with the power system. For example, all the modem AVRs are equipped with power system stabilizers (PSS) and the excitation system may be purchased by way of competitive bid
58、ding independently. The excitation systems of old turbogenerators may be retrofitted by using self-shunt excitation. The retrofitting and application experiencas at home and abroad show that, no adverse</p><p&
59、gt; (1) The 600 MW and above, even 1000 MW class large thermal power generating units, as well as nuclear power generating units will be more developed in the future, if the direct current switches are continuously empl
60、oyed for the required excitation switches in self-shunt excitation systems, more difficulties will be encountered in the selection of products. In accordance with experience of adopting inversion plus de-excitation switc
61、h on a.c. side at home and abroad (such as the retrofitting of 20</p><p> (2) PSS should be debugged and put into operation for improving the reliability of power network operation.</p><p> (3
62、) The following issues should be attached importance in calls for bid:</p><p> 1) Not only the rated output (power), but also the rated capacity (MVA) of generators should be clarified. In order to take off
63、 the required power and capacity of self-shunt excitation system, the layout of metering system should be well concerted.</p><p> 2) Since the power source of self-shunt excitation system is connected to th
64、e outlet of generator, thermal stability is not the main concern, but mechanical stability should be attached much importance.</p><p> 3) No matter dry-insulation transformer or oil-immersed transformer is
65、employed, the capacity of transformer should be considered to increase as a result of the influences of harmonics and stray field as well as the field-forcing requirements of yarious working conditions.</p><p&
66、gt; 4) As for imported type 300 MW and 600 MW turbogenerators, their rated capacities are defined as 353 and 667 MVA according to the past traditional standard, actually there still are "maximum continuous ratings&
67、quot; (according to the practice in USA, this is just rated capacity) 385 (386) and 727 (728) MVA. The capacity of excitation system should be designed and completed based on the latter. This is the difference between th
68、e manufacturing technology of the large size generating units imported from</p><p><b> A1.2譯文</b></p><p> 火電大機(jī)組勵(lì)磁系統(tǒng)的回頤與展望</p><p> 譯自<< ELECTRICITY 2002 NO.4>
69、></p><p><b> 都興有</b></p><p> 國(guó)家電力公司科學(xué)技術(shù)委員會(huì)委員</p><p> 摘要:介紹中國(guó)大型起輪發(fā)電機(jī)勵(lì)磁系統(tǒng)的發(fā)展歷程、制造和應(yīng)用情況及其發(fā)展前景,特別著重論述自并激勵(lì)磁系統(tǒng)的有點(diǎn)及推廣應(yīng)用時(shí)需注意的問(wèn)題。</p><p> 關(guān)鍵詞:火力發(fā)電廠;大型氣輪發(fā)電機(jī);勵(lì)磁
70、系統(tǒng);自并激勵(lì)磁</p><p> 20世紀(jì)70年代末,原電力部設(shè)置了大機(jī)組辦公室,著手國(guó)產(chǎn)大機(jī)組主輔設(shè)備的完善工作,后與原一機(jī)部進(jìn)行了300,600 M W 級(jí)機(jī)組制造技術(shù)的引進(jìn)事宜。當(dāng)時(shí)定義的火電大機(jī)組是指容量為100 M W及以上的機(jī)組,實(shí)際上國(guó)產(chǎn)大機(jī)組完善化的主要對(duì)象是原125,200,300 M W 機(jī)組。其勵(lì)磁系統(tǒng)除少數(shù)機(jī)組用直流勵(lì)磁機(jī)外,主要是用三機(jī)勵(lì)磁配套,包括勵(lì)磁電源(永磁機(jī)、交流旋轉(zhuǎn)勵(lì)磁機(jī)、
71、整流柜)、滑環(huán)、電刷、刷握及滅磁開(kāi)關(guān)、滅磁電阻、AVR。 20世紀(jì)80年代未,300 ,600 M W 機(jī)組引進(jìn)美國(guó)西屋與燃燒公司的制造技術(shù),西屋公司轉(zhuǎn)讓的勵(lì)磁系統(tǒng)技術(shù)是無(wú)刷勵(lì)磁。到20世紀(jì)90年代末,則多選用自并勵(lì)勵(lì)磁系統(tǒng)。</p><p> 1.1 哈爾濱電機(jī)廠</p><p> 原200 M W 發(fā)電機(jī)均采用三機(jī)勵(lì)磁;引進(jìn)型300MW 發(fā)電機(jī)先是配三機(jī)勵(lì)磁,后來(lái)也能配自井勵(lì)勵(lì)磁;
72、引進(jìn)型600 M W 發(fā)電機(jī)先是配無(wú)刷勵(lì)磁,現(xiàn)在也開(kāi)始能配自井勵(lì)勵(lì)磁。3種方式都具備。近年生產(chǎn)的125 MW(135,200MW)發(fā)電機(jī)勵(lì)磁系統(tǒng)配套選擇就更方便用戶。</p><p><b> 1.2 上海電機(jī)廠</b></p><p> 原雙水內(nèi)冷125 MW(現(xiàn)為135 M W)與300 M W發(fā)電機(jī)均系配三機(jī)勵(lì)磁;引進(jìn)型300 ,600 MW 發(fā)電機(jī)先是配無(wú)
73、刷勵(lì)磁,現(xiàn)在也能配自并勵(lì)勵(lì)磁。因此, 3種勵(lì)磁方式都有。</p><p><b> 1.3 東方電機(jī)廠</b></p><p> 原200 M W 發(fā)電機(jī)均采用三機(jī)勵(lì)磁;300 M W 發(fā)電機(jī)有三機(jī)勵(lì)磁和自并勵(lì)勵(lì)磁2種;引進(jìn)日本日立公司技術(shù)的600 M W 發(fā)電機(jī)采用自并勵(lì)勵(lì)磁系統(tǒng),近年生產(chǎn)的125 MW(135 MW)發(fā)電機(jī)勵(lì)磁系統(tǒng)能配三機(jī)勵(lì)磁和自并勵(lì)勵(lì)磁2種方
74、式。</p><p> 1.4 北京重型電機(jī)廠</p><p> 原200 M W 發(fā)電機(jī)也是采用三機(jī)勵(lì)磁; 與法國(guó)原阿爾斯通公司合作生產(chǎn)的330 M W 發(fā)電機(jī)配無(wú)刷勵(lì)磁系統(tǒng),發(fā)電機(jī)國(guó)產(chǎn)化方案已評(píng)審?fù)ㄟ^(guò),從市場(chǎng)看,也能配自并勵(lì)勵(lì)磁。</p><p> 2 勵(lì)磁系統(tǒng)的發(fā)展情況</p><p> 2.1 滑環(huán)材質(zhì)等問(wèn)題</p>
75、;<p> 過(guò)去擔(dān)心的滑環(huán)材質(zhì)、通風(fēng)、碳粉、刷握及其恒壓彈簧等問(wèn)題均已解決,現(xiàn)在滑環(huán)都能做到外徑不大于400mm,使線速度不超過(guò)70 m/s;刷握所需的恒壓彈簧問(wèn)題也已解決,而且運(yùn)行中能做到插拔安全方便;碳刷質(zhì)量也能達(dá)到要求,但有的廠配用進(jìn)口件。</p><p> 2.2 三機(jī)勵(lì)磁系統(tǒng)與無(wú)刷勵(lì)磁系統(tǒng)的選用</p><p> 由于國(guó)產(chǎn)整流元器件質(zhì)量的提高及交流勵(lì)磁機(jī)、永磁
76、機(jī)的可靠性的提高,使三機(jī)勵(lì)磁系統(tǒng)與無(wú)刷勵(lì)磁系統(tǒng)基本可并列選用。</p><p><b> 2.3 滅磁開(kāi)關(guān)</b></p><p> 過(guò)去老一代的滅磁開(kāi)關(guān)存在斷口滅弧性能差、機(jī)構(gòu)不靈等問(wèn)題,原東北技改局雖有相當(dāng)?shù)恼{(diào)試經(jīng)驗(yàn)。但沒(méi)有在全國(guó)推廣使用。其后雖引進(jìn)了制造技術(shù),但產(chǎn)品未能完全占領(lǐng)市場(chǎng)。所以,300,600 MW發(fā)電機(jī)在選用自并勵(lì)勵(lì)磁系統(tǒng)時(shí),仍多采用進(jìn)口直流開(kāi)關(guān)
77、。</p><p> 引進(jìn)型300,600 M W 發(fā)電機(jī)前期用的是無(wú)刷勵(lì)磁,沒(méi)有,也不設(shè)滅磁開(kāi)關(guān)。山東曾在125,300 MW雙水內(nèi)冷發(fā)電機(jī)的三機(jī)勵(lì)磁系統(tǒng)中,將原滅磁開(kāi)關(guān)短路運(yùn)行過(guò),還做過(guò)鑒定,但在采用三機(jī)勵(lì)磁方式與自并勵(lì)勵(lì)磁方式時(shí).仍定型裝設(shè)直流滅磁開(kāi)關(guān),理由是擔(dān)心若無(wú)開(kāi)關(guān)會(huì)托延時(shí)問(wèn), 當(dāng)發(fā)電機(jī)本身故障時(shí)擴(kuò)大燒損范圍。</p><p> 河北對(duì)200 M W 發(fā)電機(jī)三機(jī)勵(lì)磁系統(tǒng)采用
78、逆變和在交流側(cè)裝設(shè)開(kāi)關(guān)滅磁有經(jīng)驗(yàn),也做過(guò)鑒定。邯峰電廠從德國(guó)西門(mén)子公司進(jìn)口的660MW 發(fā)電機(jī)就是采用逆變和在交流側(cè)加開(kāi)關(guān)滅磁的方式,迄今運(yùn)行正常。至于滅磁電阻,多采用國(guó)產(chǎn)氧化鋅件,ABB公司則多配用碳化硅。</p><p><b> 2.4 無(wú)刷勵(lì)磁</b></p><p> 自從引進(jìn)無(wú)刷勵(lì)磁技術(shù)后,原機(jī)械、水電兩部將配套的電容器、熔斷器列人了攻關(guān)課題,在吳涇電
79、廠300 M W 發(fā)電機(jī)上試驗(yàn)成功并進(jìn)行過(guò)鑒定,但沒(méi)有形成國(guó)產(chǎn)配套,仍依靠進(jìn)口。至于可控硅元器件無(wú)論是無(wú)刷勵(lì)磁或自并勵(lì)勵(lì)磁,迄今仍多選用進(jìn)口件。自并勵(lì)勵(lì)磁系統(tǒng)的電源變壓器,國(guó)內(nèi)多選用干式。由于我國(guó)已有多家企業(yè)引進(jìn)制造技術(shù), 所以國(guó)產(chǎn)干式變壓器是被選用的基本模式。石洞口二廠進(jìn)口的ABB公司600 M W 超臨界機(jī)組采用的是油浸式變壓器,布置也很簡(jiǎn)單。2.5 AVR</p><p> 過(guò)去制造廠配套的AVR水平都不
80、高, 即使是300,600 M W 用引進(jìn)技術(shù)配套的AVR,也并不先進(jìn)。特別是大同電廠200 M W 機(jī)組飛車事件,在調(diào)查中發(fā)現(xiàn)該機(jī)組當(dāng)時(shí)啟動(dòng)并網(wǎng)、負(fù)荷升到170 M W 時(shí),由于AVR不能跟蹤調(diào)節(jié)以致失步,誘發(fā)機(jī)組原存在的軸系不穩(wěn)定,導(dǎo)致毀滅性事故。經(jīng)電科院研究后證明.此系事故起因。隨后,由電科院列專題研究開(kāi)發(fā)了微機(jī)型AVR,并將技術(shù)轉(zhuǎn)讓予南京自動(dòng)化設(shè)備廠生產(chǎn)。</p><p> 以上所述的AVR 可用于各種
81、容量發(fā)電機(jī)及三機(jī)勵(lì)磁、無(wú)刷勵(lì)磁和自并勵(lì)勵(lì)磁等3種勵(lì)磁系統(tǒng)中。三機(jī)勵(lì)磁和無(wú)刷勵(lì)磁屬于旋轉(zhuǎn)勵(lì)磁機(jī)系統(tǒng),勵(lì)磁系統(tǒng)均由發(fā)電機(jī)制造廠成套。如果采用自并勵(lì)勵(lì)磁系統(tǒng),除了滑環(huán)、碳刷、刷握由發(fā)電機(jī)制造廠負(fù)責(zé)配供外,勵(lì)磁系統(tǒng)可選擇的供貨單位就更多,國(guó)內(nèi)已有先例,進(jìn)口機(jī)組也有先例,如山東鄒縣電廠2臺(tái)口立-東方合作型600 M W 發(fā)電機(jī)的自并勵(lì)勵(lì)磁系統(tǒng)就是采用ABB公司的。國(guó)產(chǎn)300 M W 發(fā)電機(jī)有選用ABB公司的,還肩選用美國(guó)R-R公司的。發(fā)展至今的A
82、VR已非“國(guó)產(chǎn)的自并激靜止勵(lì)磁系統(tǒng)尚外于工業(yè)性試驗(yàn)”,在這一點(diǎn)上,水電機(jī)組走在火電機(jī)組的前面,值得學(xué)習(xí)。</p><p> 2.6 關(guān)于開(kāi)發(fā)自并勵(lì)勵(lì)磁系統(tǒng)的背景</p><p> 過(guò)去火電大機(jī)組都使用三機(jī)勵(lì)磁系統(tǒng),引進(jìn)西屋公司300,600 M W 機(jī)組制造技術(shù)后,就有了無(wú)刷勵(lì)磁系統(tǒng),迄今運(yùn)行情況良好,維護(hù)工作量也不多,但這2種勵(lì)磁方式都是采用旋轉(zhuǎn)勵(lì)磁機(jī),相對(duì)于自并勵(lì)靜止勵(lì)磁系統(tǒng)而言,
83、轉(zhuǎn)動(dòng)部件是關(guān)鍵。</p><p> 原水電部電科院在對(duì)自并勵(lì)勵(lì)磁系統(tǒng)進(jìn)行研究后提出《大型汽輪發(fā)電機(jī)采用自勵(lì)勵(lì)磁系統(tǒng)的可行性分析》報(bào)告。通過(guò)大機(jī)小網(wǎng)和大網(wǎng)系統(tǒng)暫態(tài)功角穩(wěn)定影響及自并勵(lì)勵(lì)磁方式對(duì)繼電保護(hù)的影響的研究后得出結(jié)論,認(rèn)為“我國(guó)電網(wǎng)大型汽輪發(fā)電機(jī)推廣采用自并勵(lì)勵(lì)磁系統(tǒng)是可行的:</p><p> (1 )自并勵(lì)勵(lì)磁系統(tǒng)由于沒(méi)有旋轉(zhuǎn)部件,運(yùn)行可靠性高。</p><
84、p> (2)從暫態(tài)功角穩(wěn)定要求考慮,大型汽輪發(fā)電機(jī)推廣采用自并勵(lì)勵(lì)磁系統(tǒng)是可行的。個(gè)別發(fā)電機(jī)采用自并勵(lì)勵(lì)磁系統(tǒng)時(shí),高壓出口三相短路,在較低強(qiáng)勵(lì)倍數(shù)下(計(jì)算中為K=2倍,相當(dāng)于國(guó)標(biāo)計(jì)算方法的1.6倍),暫態(tài)功角穩(wěn)定水平與時(shí)間常數(shù)為0.35 s 的常規(guī)勵(lì)磁系統(tǒng)相比,基本相同。而全網(wǎng)機(jī)組均采用自并勵(lì)勵(lì)磁系統(tǒng)時(shí),在低強(qiáng)勵(lì)倍數(shù)下,暫態(tài)功角穩(wěn)定水平優(yōu)于全網(wǎng)機(jī)組均采用0.35s的常規(guī)勵(lì)磁系統(tǒng)。強(qiáng)勵(lì)倍數(shù)提高后,自并勵(lì)系統(tǒng)的優(yōu)勢(shì)更加明顯。<
85、/p><p> ?。?)從電力系統(tǒng)暫態(tài)電壓穩(wěn)定要求出發(fā), 大型汽輪發(fā)電機(jī)推廣采用自并勵(lì)系統(tǒng)也是可行的。它不會(huì)降低系統(tǒng)的暫態(tài)電壓穩(wěn)定水平,而且可提高系統(tǒng)的暫態(tài)電壓穩(wěn)定水平,甚至可使在某些條件下暫態(tài)電壓不穩(wěn)定的系統(tǒng)為穩(wěn)定</p><p> (4)大型汽輪發(fā)電機(jī)采用自并勵(lì)系統(tǒng),不會(huì)影響主保護(hù)的可靠動(dòng)作,也可保證后備保護(hù)正確動(dòng)作,切除故障。</p><p> (5)自并勵(lì)勵(lì)
86、磁發(fā)電機(jī)沒(méi)有同軸旋轉(zhuǎn)的勵(lì)磁機(jī),減少了機(jī)組的扭振模式, 降低了軸系扭振損壞的可能性。</p><p> (6)自并勵(lì)勵(lì)磁系統(tǒng)參數(shù)的選擇比常規(guī)勵(lì)磁系統(tǒng)更為靈活,可根據(jù)不同電網(wǎng)的特點(diǎn)提出要求,以滿足其需要”</p><p> 自并勵(lì)靜止勵(lì)磁系統(tǒng)應(yīng)用于水電系統(tǒng)似乎“理所當(dāng)然、別無(wú)選擇”,已有豐富的經(jīng)驗(yàn),但要推廣采用到大型汽輪發(fā)電機(jī)上卻經(jīng)歷了相當(dāng)漫長(zhǎng)的道路。原先東方電機(jī)廠開(kāi)發(fā)并推薦在寶雞電廠30
87、0MW 發(fā)電機(jī)上使用,但因當(dāng)時(shí)擔(dān)心寶雞電廠地處陜西電網(wǎng)震蕩中心而作罷。隨著管理體制改革,由計(jì)劃經(jīng)濟(jì)轉(zhuǎn)向市場(chǎng)經(jīng)濟(jì),在原電力部科技司主持下,由華北電管局支持,在北京召開(kāi)了自并勵(lì)靜止勵(lì)磁的技術(shù)研討會(huì),會(huì)上建議推廣該技術(shù),可以先進(jìn)口,如Roles Royals公司和ABB公司的產(chǎn)品。以此為契機(jī), 一批300 M W機(jī)組工程項(xiàng)目幾乎都采用了自并勵(lì)靜止勵(lì)磁系統(tǒng),而且2001年以來(lái)新的600 M W 機(jī)組工程項(xiàng)目。如定曲、嘉興、臺(tái)山電廠,也都選用了自
88、并勵(lì)靜止勵(lì)磁系統(tǒng)。</p><p> 在原電力部的自并勵(lì)勵(lì)磁系統(tǒng)技術(shù)研討會(huì)后,相當(dāng)一批工程項(xiàng)目均采用自并激勵(lì)磁系統(tǒng), 當(dāng)時(shí)的客觀條件是還沒(méi)有國(guó)產(chǎn)化的成熟產(chǎn)品,采用進(jìn)口自并勵(lì)靜止勵(lì)磁系統(tǒng)的價(jià)格與國(guó)產(chǎn)旋轉(zhuǎn)勵(lì)磁機(jī)無(wú)刷勵(lì)磁系統(tǒng)持平。如果利用靜止勵(lì)磁系統(tǒng),由于軸系縮短, 300 M W 機(jī)組若在主廠房?jī)?nèi)能改為橫向布置,機(jī)頭直對(duì)鍋爐房,則管道等布置將更方便,從而節(jié)省土建、安裝費(fèi)用。國(guó)外甚至有將機(jī)頭對(duì)鍋爐、軸系橫向偏斜、以縮
89、短主廠房跨度的布置實(shí)例。</p><p> 此外,勵(lì)磁系統(tǒng)在大機(jī)組、大電網(wǎng)中已不宜僅視之為發(fā)電機(jī)的一個(gè)附屬裝置,它與電力系統(tǒng)密切相關(guān),如現(xiàn)代的AVR都配有PSS功能。牡丹江電廠改造后的經(jīng)驗(yàn)證明,將PSS調(diào)試投人運(yùn)行后,改善了故障后電網(wǎng)低頻振蕩,從而釋放了電廠窩電,達(dá)到滿發(fā),取得了顯著的經(jīng)濟(jì)效益。根據(jù)現(xiàn)在的市場(chǎng)情況和貴州省10臺(tái)300 M W 機(jī)組的招投標(biāo)經(jīng)驗(yàn),已可做到如上述日立600 M W 發(fā)電機(jī)勵(lì)磁系統(tǒng)的單
90、獨(dú)招投標(biāo)酉己套了。</p><p> 美國(guó)100MW 發(fā)電機(jī)的改造都采用了自并勵(lì)勵(lì)磁系統(tǒng), 這一點(diǎn)對(duì)我國(guó)的改造工作頗有參考借鑒價(jià)值。實(shí)際上,我國(guó)已有田家庵等電廠改造的實(shí)績(jī)。根據(jù)加拿大的經(jīng)驗(yàn),迄今尚未發(fā)現(xiàn)電力系統(tǒng)中大量使用自并勵(lì)勵(lì)磁后對(duì)電力系統(tǒng)的負(fù)面影響,這是國(guó)內(nèi)近幾年來(lái)幾乎新建工程都樂(lè)于采用自并勵(lì)勵(lì)磁系統(tǒng)的原因之一。</p><p><b> 希望與建議</b>&
91、lt;/p><p> 今后火電大機(jī)組發(fā)電機(jī)容量將多發(fā)展600MW 及以上、甚至1 000 M W 級(jí)工程,自并勵(lì)勵(lì)磁系統(tǒng)中所需勵(lì)磁開(kāi)關(guān)若繼續(xù)用直流開(kāi)關(guān),產(chǎn)品選用上將遇到更多困難。根據(jù)河北200 M W 發(fā)電機(jī)改造用逆變加交流側(cè)開(kāi)關(guān)滅磁的經(jīng)驗(yàn), 及邯峰電廠進(jìn)口西門(mén)子公司660 M W 發(fā)電機(jī)也用逆變加交流側(cè)開(kāi)關(guān)滅磁的經(jīng)驗(yàn),最好進(jìn)行系統(tǒng)總結(jié)并作必要的試驗(yàn)研究,開(kāi)發(fā)出本地化的成套產(chǎn)品。</p><p&
92、gt; (2)要重視勵(lì)磁系統(tǒng)既有的特點(diǎn)需要,又與電力系統(tǒng)密切相關(guān),特別是要各方配合,將PSS功能調(diào)試投人使用。</p><p> (4)根據(jù)參加招投標(biāo)工作時(shí)遇到的情況,下列問(wèn)題應(yīng)予注意:</p><p> a.發(fā)電機(jī)不能只說(shuō)額定功率,還要明確其額定容量。為了扣除自并勵(lì)勵(lì)磁系統(tǒng)所需功率與容量后,計(jì)量系統(tǒng)布置設(shè)計(jì)要配合好。</p><p> b .由于自并勵(lì)勵(lì)磁
93、系統(tǒng)的電源接自發(fā)電機(jī)出口,熱穩(wěn)定不是主要的問(wèn)題,而機(jī)械穩(wěn)定性應(yīng)予充分關(guān)注。</p><p> c.不論是采用干式變壓器或油浸式變壓器,由于諧波與雜散磁場(chǎng)的影響,要考慮加大變壓器的容量。</p><p> d.對(duì)引進(jìn)型300,600 M W 發(fā)電機(jī),其額定容量按過(guò)去的傳統(tǒng)標(biāo)準(zhǔn)定為353,667 MVA,實(shí)際上還有“最大連續(xù)容量”(按美國(guó)的做法,這就是額定容量) 358 (386)、727
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 火電機(jī)組回?zé)嵯到y(tǒng)風(fēng)險(xiǎn)評(píng)估研究.pdf
- 核電機(jī)組自并勵(lì)勵(lì)磁系統(tǒng)—滅磁系統(tǒng)及伏赫茲限制的研究.pdf
- 交流勵(lì)磁變速風(fēng)電機(jī)組的研究與仿真.pdf
- 火電機(jī)組回?zé)嵯到y(tǒng)優(yōu)化和故障診斷.pdf
- 發(fā)電機(jī)組勵(lì)磁系統(tǒng)參數(shù)辨識(shí)方法的研究與應(yīng)用.pdf
- 交流勵(lì)磁發(fā)電機(jī)勵(lì)磁控制系統(tǒng)的研究.pdf
- 火電機(jī)組回?zé)嵯到y(tǒng)性能監(jiān)測(cè)及狀態(tài)評(píng)價(jià).pdf
- 復(fù)合勵(lì)磁同步發(fā)電機(jī)勵(lì)磁控制系統(tǒng)的研究與設(shè)計(jì).pdf
- 發(fā)電機(jī)組勵(lì)磁系統(tǒng)故障診斷與容錯(cuò)控制.pdf
- 雙PWM變換器勵(lì)磁的交流勵(lì)磁發(fā)電機(jī)勵(lì)磁系統(tǒng)設(shè)計(jì).pdf
- 柴油發(fā)電機(jī)組自動(dòng)勵(lì)磁系統(tǒng)的分析研究.pdf
- 交流勵(lì)磁風(fēng)力發(fā)電機(jī)的勵(lì)磁控制系統(tǒng).pdf
- 水電機(jī)組勵(lì)磁控制系統(tǒng)故障診斷研究.pdf
- 同步發(fā)電機(jī)勵(lì)磁系統(tǒng)
- 發(fā)電機(jī)勵(lì)磁系統(tǒng)原理
- 柴油發(fā)電機(jī)組微機(jī)勵(lì)磁控制系統(tǒng)的研究與實(shí)現(xiàn).pdf
- 基于MATLAB和PSASP的水電機(jī)組勵(lì)磁系統(tǒng)建模研究.pdf
- 交流勵(lì)磁發(fā)電機(jī)交-交勵(lì)磁系統(tǒng)仿真研究.pdf
- 火電大機(jī)組參賽考核系統(tǒng)的研究與設(shè)計(jì).pdf
- 三峽電廠發(fā)電機(jī)組勵(lì)磁系統(tǒng)的仿真分析與研究.pdf
評(píng)論
0/150
提交評(píng)論