船舶英語外文翻譯--船舶危險(xiǎn)狀態(tài)下的縱向強(qiáng)度計(jì)算_第1頁
已閱讀1頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  外文翻譯</b></p><p>  Longitudinal strength of ships with accidental</p><p><b>  damages</b></p><p>  Ge Wang*, Yongjun Chen, Hanqing Zhang, Hua Pe

2、ng</p><p>  This paper presents an investigation of the longitudinal strength of ships with damages due to grounding or collision accidents. Analytical equations are derived for the residual hull girder stre

3、ngth and verified with direct calculations of sample commercial ships for a broad spectrum of accidents. Hull girder ultimate strengths of these sample vessels under sagging and hogging conditions are also calculated, ba

4、sed on which correlation equations are proposed. To evaluate a grounded ship, using t</p><p>  Keywords: Residual strength; Hull girder ultimate strength; Section modulus; Damage; Collision;Grounding</p&g

5、t;<p>  1. Introduction</p><p>  Traditionally, ships have been designed to resist all loads expected to arise in their seagoing environment. The objective in structural design has been to maintain a

6、ship’s structural integrity for normal operating conditions. A combination of the most severe loads is usually selected as the nominal design load.</p><p>  Protection of a ship and the cargo it carries from

7、 damages incurred by accidents, though an essential issue in the design of watercraft, has been focused on subdividing a ship into compartments. National and international standards (Load Line,MARPOL, SOLAS, Classificati

8、on Societies’ Rules) have established requirements or watertight bulkheads and subdivision. Structural strength in collision, grounding or internal accidents (such as an explosion) has attracted very little attention.<

9、;/p><p>  Public sensation increases each time there is a major loss of ships, cargo and life atsea, or when there is oil pollution from damaged ships. This motivates the development of design procedures and re

10、lated analysis methods for accidental loads, in particular, the loads due to ship collision or grounding accidents.</p><p>  A ship may collapse after an accident because of inadequate longitudinal strength.

11、However, the consequences of an accident on a ship’s strength are seldom investigated.Although there are some papers published on the residual strength of damaged ship hulls [1,2], this field still remains unexplored.<

12、;/p><p>  This paper reports on an investigation of the longitudinal strength of damaged ship hulls for a broad spectrum of collision and grounding accidents. Both the hull girder section modulus and hull girde

13、r ultimate strength are calculated. We aim to obtain simple relations to assess residual hull girder strength, which may be used ashandy and reliable tools to help make timely decisions in the event of an emergency.</

14、p><p>  Theoretical analyses are presented and analytical formulae are derived. Typical designs of 67 commercial ships, including 21 double hull tankers, 18 bulk carriers, 22 single hull tankers and six contain

15、er carriers, which have lost portions of bottom shell plating and side shell plating, are analyzed to obtain such simple equations for predicting residual strength of damaged ships.</p><p>  2. Assumptions a

16、nd analytical methods</p><p>  2.1. Section modulus of hull girders</p><p>  It has been a proven practice to use simple beam theory to analyze the global bending of hull girders. Many experimen

17、ts have confirmed that the bending behavior of ships agrees quite well with the beam theory.</p><p>  The hull girder section modulus indicates the bending strength of the primary hull structures. The calcul

18、ation of a midship section modulus is a very important step in basic ship design. Structural members that are continuous in the longitudinal direction are included in the calculation of the section modulus. Only members

19、that are effective in both tension and compression are assumed to act as part of the hull girder. The section modulus to the deck or to the bottom is obtained by dividing the </p><p>  2.2. Ultimate strength

20、 of hull girder</p><p>  The hull girder section modulus is an indicator of initial buckling or initial yielding, which is usually not the state at which the ship achieves its ‘‘true’’ maximum bending capaci

21、ty. Plates and longitudinals may experience elastic buckling, plastic buckling, post buckling, yielding, and/or fracture in the process of approaching hull girder ultimate strength.</p><p>  The so-called ul

22、timate strength of hull girder corresponds to the maximum bending capacity beyond which the ship will break its back due to extensive yielding and buckling.</p><p>  The continuous improvement of knowledge r

23、egarding the behavior of hull girders and structural members has led to the development of various methods.ISSC 2000 Special Task Committee VI.2 [4] reviews the state-of-the-art technology for predicting hull girder ulti

24、mate strength. The committee conducted extensive benchmark calculations and assessed the uncertainties involved in these approaches.</p><p>  Among all groups of approaches (closed-form formulae, simplified

25、analytical methods and nonlinear FEM simulations), the simplified analytical methods are favored by most analysts. These approaches save modeling time; they generally account for fabrication imperfections and provide rel

26、iable results. Extensive related studies have placed simplified methods as the first choice when one tries to calculate ultimate hull girder strength. A program of this kind, ALPS/ISUM[3], is used in this investigat</

27、p><p>  2.3. Extent of damages</p><p>  2.3. Extent of damages</p><p>  Every accident is different. The resulting damage also varies. Accidents require many parameters to describe the

28、 damage a ship sustains after an accident. A comprehensive description can easily fill a couple of pages or more, even though not all of the data is necessary for calculating hull girder strength. For simplicity, this pa

29、per uses definitions that are convenient for calculation but retain the main characteristics of accidental damages.</p><p>  For a grounding, it is assumed that the bottom shell and the attached bottom longi

30、tudinals are lost. No girders are assumed to be damaged after a grounding. This study investigates a broader range of bottom loss, up to 80% of ship breadth, to simulate minor to severe grounding damages.</p><

31、p>  For a collision, it is assumed that the side shell and the attached longitudinals are lost. The damage starts from the deck at the side and extends downward. The deck stringer plate and longitudinal bulkhead that

32、attach to the damaged side are assumed to be intact after an accident. A broad range of side shell loss, ranging from 5% to about 40% of ship depth, is considered.</p><p>  The assumptions mentioned above he

33、lp to simplify the definition of damages. Only one parameter is used to describe the damage. Introduction of additional parameters is avoided. The focus is on shell plating, the first barrier from water flooding. Structu

34、res attached to the damaged shell are not considered with the assumption that they may be approximated by ‘‘smearing’’ as equivalent thickness of shell.</p><p>  There exist other assumptions with regard to

35、damage extents. In the ABS Guide for assessing hull-girder residual strength [5], a grounding damage includes bottom girders attached to the damaged bottom shell to a certain depth; collision damage includes deck stringe

36、r plate and slope bulkhead plating attached to the damaged side shell plating for a specified extent. Paik et al. [1] defined collision and grounding damages according to this ABS Guide. For sensitivity studies, they ana

37、lyzed 0.8 to 1.</p><p>  2.4. Presentation of results</p><p>  Two means are used to indicate the longitudinal bending strength of a ship hull: hull girder section modulus and ultimate hull gird

38、er strength. Section modulii to thedeck and bottom, and ultimate bending strengths of hull girder under sagging and hogging are calculated and presented in dimensionless format; all are compared with their values at inta

39、ct condition.</p><p>  Bottom damage is expressed as a percentage of the ship’s breadth. Side damage extent is expressed as a percentage of the ship’s depth.The investigation is focused on midship sections o

40、f typical commercial ships. Sections beyond midship are not analyzed in this paper but the same analysis may be performed on those sections readily.</p><p>  3. Simple equations for the residual section mod

41、ulus</p><p>  Fig. 1 is a sketch of a transverse section, which characterizes the geometry of a ship and ignores many details. This transverse section may be a double hull tanker, a bulk carrier, a container

42、 carrier, a single hull tanker or any other type of ship. The shaded area is the assumed damage caused by either collision or grounding accident.</p><p>  For an intact hull, the cross-sectional area, height

43、 of neutral axis above the base line, distance of the deck at the side to the neutral axis, moment of inertia and section modulus are A; z0; z1; I and eSMT0; respectively. The section modulii to the deck and the bottom,

44、eSMdkT0 and eSMbtmT0; have been used by the industry to indicate the hull girder strength.</p><p>  ΔA is the cross-sectional area of the lost structure. Its center is c from the neutral axis of the intact h

45、ull. The c is positive when the center of the damaged area ΔA is </p><p>  above the neutral axis. The shift of neutral axis Δz0 is </p><p><b>  Where</b></p><p>  The

46、 neutral axis moves away from the lost area. The moment of inertia of the</p><p>  damaged hull becomes</p><p>  Substituting Eq. (1) into Eq. (2) gives</p><p>  The section modulus

47、 to a location of distance z from the neutral axis when z is above</p><p>  the neutral axis becomes</p><p>  Substituting Eq. (1) into Eq. (3) and replacing eSMT0 with I=z into the above</p&

48、gt;<p>  equation gives</p><p>  An expansion of this equation by neglecting higher order terms of r gives the</p><p>  expression for dimensionless section modulus for z above the neutra

49、l axis</p><p>  Through a similar process, the following equation is derived for z below the neutral</p><p><b>  axis:</b></p><p>  Eqs. (1)–(8) are applicable to genera

50、l cases where there is an area loss in a transverse section.</p><p><b>  中文翻譯:</b></p><p>  船舶危險(xiǎn)狀態(tài)下的縱向強(qiáng)度計(jì)算</p><p>  ---Ge Wang*, Yongjun Chen, Hanqing Zhang, Hua Peng<

51、;/p><p><b>  摘要</b></p><p>  此文將提到關(guān)于船舶在擱淺和碰撞兩種危險(xiǎn)狀況下的調(diào)查報(bào)告。給出了破損船體計(jì)算方程式和典型商船事故的直接計(jì)算方法。船體梁在中垂和中拱下根據(jù)所給出的方程式計(jì)算極限強(qiáng)度。為了評(píng)估擱淺的船,計(jì)算時(shí)甲板的剖面模數(shù)要取得大些,而船底剖面模數(shù)要取得小些。相反的,在估算碰撞條件下船時(shí)甲板的剖面模數(shù)要取得小些,而船底剖面模數(shù)要取得

52、大些。導(dǎo)出的方程適用于67系列商船,21型雙殼油船,18型散貨船,22型單殼油船和6型集裝型船。其主要數(shù)值、標(biāo)準(zhǔn)差、變動(dòng)系數(shù)將從這些新的分析方程中獲得。船長(zhǎng)對(duì)這些數(shù)值的影響是很小的,即使船長(zhǎng)從150m長(zhǎng)到400m。而船的類型不同將有對(duì)船的剩余強(qiáng)度有影響。統(tǒng)一的對(duì)于商船的方程式并不是基于船體主尺度的,這些方程將在下次預(yù)測(cè)剩余強(qiáng)度時(shí)很有作用,并不需要再一步步的近似計(jì)算,在緊急情況下和補(bǔ)救的情況下。</p><p>&

53、lt;b>  1.簡(jiǎn)介</b></p><p>  一般的,船設(shè)計(jì)用于承受正常情況下的載重。在船體結(jié)構(gòu)設(shè)計(jì)方面,它的設(shè)計(jì)是維持船體結(jié)構(gòu)完整和使船一般狀況下的運(yùn)行。通常以最多載荷的情況作為標(biāo)準(zhǔn)設(shè)計(jì)載況。</p><p>  為保存船只和它的貨物不遭受損壞是船只設(shè)計(jì)的必要點(diǎn),所以已經(jīng)開始注重分艙設(shè)計(jì)。我國(guó)和國(guó)際上已經(jīng)制定了明確的標(biāo)準(zhǔn)來劃分水密艙壁。而對(duì)于碰撞后的結(jié)構(gòu)強(qiáng)度,擱淺

54、或者內(nèi)部受損并不受到關(guān)注。公眾的關(guān)注在逐漸增強(qiáng)關(guān)于船舶船舶失事、貨船的海上生存能力,或者由于船失事而引起的海上石油污染。這些促使設(shè)計(jì)和程序上在分析方式上的提升在危險(xiǎn)載況下,尤其是船在擱淺和碰撞下的載荷。</p><p>  船可能在事故后斷裂,由于縱向強(qiáng)度上的不足,然而船體強(qiáng)度的研究是很少的,雖然有一些關(guān)于剩余強(qiáng)度方面的文章,但有待深討。文章就一個(gè)關(guān)于縱向強(qiáng)度的調(diào)查提出報(bào)告,一個(gè)關(guān)于船體外殼碰撞和擱淺的調(diào)查。梁和

55、桁架的剖面模數(shù)將考慮在內(nèi)。我們的目的在于獲得一個(gè)方便可靠的關(guān)系式來評(píng)價(jià)剩余船體梁的強(qiáng)度,一個(gè)可以用在緊急的狀況下方便可靠的方法去判定的方法。理論分析并得出解析公式。典型設(shè)計(jì)的67型商船,21型雙殼油船,18型油船。22型單殼油船和6型集裝箱船。當(dāng)船在失去部分船底板和邊板,將被分析并以此獲得一個(gè)簡(jiǎn)單方程去推測(cè)破損船的的剩余強(qiáng)度。</p><p>  2. 假設(shè)和分析方法</p><p>&l

56、t;b>  2.1船體剖面模數(shù)</b></p><p>  它已被應(yīng)用于實(shí)際中,以簡(jiǎn)支梁理論去分析船體的總縱彎曲,很多實(shí)驗(yàn)也已證明船體的實(shí)際彎曲與簡(jiǎn)支梁理論分析的結(jié)果十分符合。</p><p>  船體梁的剖面模數(shù)反應(yīng)了船體結(jié)構(gòu)主要的彎曲強(qiáng)度。計(jì)算船體中橫剖面模數(shù)是船體設(shè)計(jì)過程中相當(dāng)重要的一個(gè)步驟??v向連續(xù)構(gòu)件參與剖面模數(shù)的計(jì)算,而將同時(shí)影響張力和壓力的構(gòu)件當(dāng)做船體梁的部

57、分。船底部和上甲板處的剖面模數(shù)是通過將剖面對(duì)水平中和軸的慣性矩除以兩者分別到中和軸的距離得到。</p><p>  2.2 船體的極限強(qiáng)度</p><p>  船體的剖面模數(shù)只是初步的屈服強(qiáng)度的象征,而通常的并不代表船體受到的最大的彎曲強(qiáng)度。板材和骨材在拉伸逐步接近屈服極限的過程中會(huì)經(jīng)歷彈性彎曲、塑性變形、后屈曲、屈服、斷裂。</p><p>  極限強(qiáng)度就是求得剛

58、好讓結(jié)構(gòu)發(fā)生失穩(wěn)時(shí)的那個(gè)應(yīng)力值——臨界應(yīng)力</p><p>  對(duì)于船體梁和船體結(jié)構(gòu)的認(rèn)識(shí)的不斷提高,致使各種方法上的提升。ISSC2000特別理事會(huì)引薦了state-of-the-art技術(shù)用于預(yù)測(cè)船體梁的極限強(qiáng)度。該委員會(huì)進(jìn)行了廣泛的基準(zhǔn)計(jì)算并對(duì)這些方法中的不確定度做了評(píng)測(cè)。</p><p>  在所有的方法中,簡(jiǎn)化分析法是最受設(shè)計(jì)師們喜愛的,這種方法省略了建模的時(shí)間,它通??紤]先進(jìn)行

59、折減并能提供出可靠的結(jié)果,在大量的研究中已經(jīng)將簡(jiǎn)化分析法作為他們估算極限強(qiáng)度的方法。</p><p><b>  2.3 破損度</b></p><p>  每次的事故都是不一樣的,導(dǎo)致的損失也是不同的,船在事故后需要很多因數(shù)來描述船體的破損程度。一個(gè)精確的描述可以輕松的的概括幾頁的內(nèi)容甚至更多,即使不是所有的數(shù)據(jù)在估算后船體強(qiáng)度時(shí)都是必須的。簡(jiǎn)單的說,本文用的定義雖

60、然方便了估計(jì),但仍有例外的時(shí)候。</p><p>  對(duì)于擱淺,假設(shè)船底板和其縱向附體不計(jì),同時(shí)主梁沒有在擱淺的情況下?lián)p壞。這些研究調(diào)查了大量的擱淺事件,輕微受損直到80%的型寬從的嚴(yán)重?fù)p壞。</p><p>  對(duì)于碰撞損壞,假設(shè)邊板和相關(guān)的縱向骨材不計(jì),損壞從上甲板邊緣開始到船體下端,甲板邊板和縱艙壁在假設(shè)中是完整的,大面積的舷側(cè)外板的不計(jì)的從型深的5%到40%處。</p>

61、<p>  這種上述提到的假設(shè)方法,用于簡(jiǎn)單的定義損壞,只用一項(xiàng)系數(shù)來描述損壞,避免引進(jìn)新的參數(shù),重點(diǎn)是船體與水的第一層屏障--船殼板,附體對(duì)于破損的船體來說可以不計(jì),在假設(shè)是可作為污點(diǎn)來處理,相對(duì)于相對(duì)較厚度的船殼板。</p><p>  對(duì)于船體的破損程度有其它假設(shè),在ABS的規(guī)定中估算船體梁的剩余強(qiáng)度,擱淺損壞發(fā)生在船底船體梁的一定深度下。碰撞損壞包括甲板邊板和舷側(cè)艙壁。Paik以及其他人在定

62、義碰撞和擱淺,并根據(jù)根據(jù)ABS規(guī)范作了進(jìn)一步的研究,他們分析了ABS規(guī)范下0.8到1.2范圍的損壞。Wang以及他人分析了大量的船底損壞事件,從微小的到嚴(yán)重的,Wang以及他人也研究了船底梁損壞甚至船底板損壞的情況。</p><p><b>  2.4 結(jié)果呈現(xiàn)</b></p><p>  有兩種方法用于計(jì)算船體的縱向彎曲強(qiáng)度、主船體剖面模數(shù)和屈曲強(qiáng)度。甲板和船底的橫

63、剖面模數(shù)、船底屈曲強(qiáng)度在中垂和中拱情況下被估算并無因次化,且都與完整情況下作比較。</p><p>  底部損壞被表示成與型寬的比值,舷側(cè)的損壞程度被表示為與型深的比值。</p><p>  調(diào)查關(guān)注于典型商船船中剖面處。船中以外的剖面在此文中不作分析,但是要作相類似的分析并不難。</p><p>  3. 簡(jiǎn)單一次方程式計(jì)算剩余剖面模數(shù)</p>&l

64、t;p>  圖一是一幅橫剖面草圖,描繪了船的主要幾何參數(shù),略去一些多余的細(xì)節(jié),這可以代表一條雙殼油船的橫剖面、集裝箱船、單殼油船或其它一些典型船,陰影部分假設(shè)是由于碰撞和擱淺兒失去的地方。</p><p>  對(duì)于一條完整的船體,橫剖面面積,中和軸到基線、上甲板的距離,慣性矩,橫剖面系數(shù),分別為A、、、I和中性軸到上甲板的橫剖面面積和中性軸到船底的橫截面面積,在實(shí)際生產(chǎn)中用于估算船體強(qiáng)度。</p>

65、;<p>  △A 表示橫剖面上的失去的結(jié)構(gòu),中性軸到基線的距離是C(完整的船),當(dāng)△A 在中性軸之上C具有好的意義,中性軸將移動(dòng)的△ 表示為</p><p><b> ?。?)</b></p><p><b>  這里</b></p><p><b>  (2)</b></p&g

66、t;<p>  中性軸移動(dòng),此時(shí)慣性矩變?yōu)?lt;/p><p>  I´= (3)</p><p>  將(1)帶入(2)得</p><p>  I´= (4)</p><

67、p>  從中和軸為起點(diǎn)的距離,當(dāng)距離Z在中性軸上時(shí),剖面模數(shù)為</p><p> ?。?) </p><p>  將(1)帶入(3),用I/Z代替得</p><p>  (6)

68、 </p><p>  該方程的擴(kuò)展,忽略高階項(xiàng)r,剖面模數(shù)無因次化剖面模數(shù),z在中和軸以上</p><p> ?。?) </p><p>  通過一個(gè)類似的程序,下列方程表示為z在中和軸以下:</p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論