版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 中文3700字,2100英文單詞,10500英文字符</p><p> 文獻(xiàn)出處:Wang X, Peng Y, Wang S, et al. Influence of wastewater composition on nitrogen and phosphorus removal and process control in A2O process.[J]. Bioprocess &a
2、mp; Biosystems Engineering, 2006, 28(6):397-404.</p><p> Influence of wastewater composition on nitrogen and phosphorus removal and process control in A2O process</p><p> X Wang , Y
3、Peng , S Wang , J Fan , X Cao</p><p><b> Abstract </b></p><p> A bench-scale anaerobic–anoxic–oxic (A2O) bioreactor with steady denitrifying phosphoru
4、s removal performance was tested to determine the influence of influent C/N ratio (SCOD/TN) and C/P ratio (SCOD/TP) on biological nutrient removal for treating synthetic brewage wastewater; meanwhile, the spatial profile
5、s of DO, pH and ORP sensors in such systems were investigated. The results showed that influent C/N ratio had significant effect on the TN, TP removal efficiencies and the ratio of anoxic to ae</p><p> KEY
6、 WORDS: A2O process,C/N ratio ,C/P ratio,DO,PH,ORP</p><p> Experimental procedures </p><p> Synthetic brewery wastewater used in this study contained (per liter): brewage (ethanol content 3.5%
7、) 2.8–3.4 mL; NH4Cl 0.20–0.3 g; KH2PO4 0.02–0.08 g;MgSO47H2O 0.05 g; NaHCO3 0.05–0.15 g and Ca-Cl22H2O 0.01 g. The pH was controlled at 7.2–7.6 by adding NaHCO3 and NaOH solution. Temperature was controlled at 20–22oC. T
8、he influent flow rate was 150 L/day, the internal recirculation ratio and sludge recycled ratio was kept at 3.2 and 0.5, respectively. DO was controlled at 2–3 mg/L, sludge age was</p><p><b> Chart<
9、;/b></p><p> Table 1 The whole experiment period data</p><p> Analytical methods</p><p> According to standard methods [10], COD, MLSS, alkalinity, NH4+-N, NO2-N, NO3-N, TN, T
10、P and PO34 -P were measured. The DO and temperature were measured continuously using a WTW oxygen probe. Continuous monitoring of pH and ORP were carried out using WTW pH/Oxi340i on-line analyzer. Poly-bhydroxybutyrate (
11、PHB) was measured using a rapid gas chromatographic method described by Smolders et al. [11]</p><p> Results and discussion</p><p> Effect of influent C/N ratio on N and P removal </p>
12、<p> Figure 2a, b showed the TN and TP removal efficiencies at different C/N ratios, respectively, while influent C/P ratio was kept at about 40–45. It could be seen from Fig. 2a that increasing the C/N ratio from
13、3 to 7.1 resulted in the increase of TN removal efficiency steadily; the average TN removal efficiency reached 80.3% at C/N ratio of 7.1. </p><p> However, TN removal efficiency decreased gradually with the
14、 increase of C/N ratio from 7.1 to 12. As shown in Table 2, when mean influent C/N ratio was about 3.5, TN removal efficiency was 67.2%, effluent TN was 24.18 mg/L. In this case, organic loading was only 0.66 mgCOD/(m3 d
15、), nitrate concentration at the end of aerobic zone was 25.2 mg N/L, mainly because the sum of stored PHB plus external carbon source entering into the anoxic zone was lower correlative to nitrate concentration recycled
16、f</p><p> Table 2 In different regions of different C/N ratio of total nitrogen, total phosphorus, under the condition of COD, NO3-- N concentration</p><p> As shown in Table 3, it can be seen
17、 that COD/NOx was only 1.64 kgCOD/kgN; however, in order to realize complete denitrification, without PHB storage of biomass growth, the C/N ratio is the theoretical minimum of 2.86 kgCOD/kgN. But due to microorganism gr
18、owth, this ratio will normally be around 4 kgCOD/kgN [12]; as a result, it was impossible to achieve complete denitrification. When influent C/N ratio increased from 3.5 to 7.1, the corresponding TN removal efficiency in
19、creased 12.99%. Therefore</p><p> On the other hand, it could also be seen from Fig. 2b that increasing the C/N ratio from 3 to 5 resulted in the increase of TP removal efficiency gradually, the average TP
20、removal efficiency was larger than 90%, and mean effluent TP concentration was lower than 1 mg/L. It was demonstrated that low influent C/N has little effect on the TP removal efficiency because of the presence of DNPAOs
21、, while TP removal efficiency decreased with the increase of C/N ratio from 5 to12, and it almost decreased </p><p> Table 3 Anoxic zone under different influent C/N conditions than the C/NOx ratio and C/PO
22、4 ratio</p><p> Filipe et al. [14] stated that at higher organic loading, available COD would not be completely utilized by the PAOs in the anaerobic zone, the excess COD would favor the growth of glycogen-
23、accumulating organisms (GAOs), which led to the reduction of the PAO fraction in the activated sludge. It could be calculated according to Table 2 that COD consumed per unit P release increased gradually with the increas
24、e of organic loading, which was 4.94, 5.96, 7.29 and 18.24 mg COD/mg P for influent C/N ra</p><p> Effect of influent C/P ratio on N and P removal </p><p> Figure two</p><p> Fig
25、ure 5 presents the TN and TP removal efficiencies at different influent C/P ratios. Influent C/N ratio was maintained at 7–7.5. It could be seen from Fig. 5a that the C/P ratio hardly affected the TN removal, and TN remo
26、val efficiency was higher than 75% under different influent C/P ratios for the constant organic loading. </p><p> Table 4 In different regions of different C/P ratio of total nitrogen, total phosphorus, und
27、er the condition of COD, NO3-- N concentration</p><p> As shown in Table 4, average NO3-N and PO4 3-P removal efficiencies in the anoxic zone were between 70 and 85% and 60 and 71% for four mean C/P ratios
28、of 55, 45, 34and 23, respectively. According to Table 5, at almost the same influent organic loading, PHB concentration entering the anoxic zone decreased with the increase of influent C/P ratio, while COD concentration
29、increased with the increase of influent C/P ratio. Results showed that most of COD in the anaerobic zone was synthesized easily P</p><p> Table 5 Different water ratio of C/P under hypoxia in C/NOx ratio, t
30、he ratio of C/PO4segment</p><p> Yagci et al. [17] stated that at high C/P ratio, the existing organic carbon (mainly VFA) was more than the required carbon sources storing all available P because P was lim
31、iting, so that the net result was total P removal. However, when P was not limiting at low C/P ratio, the P storage capacity was limiting for the lack of soluble organic carbon, and there was always a net P level in the
32、effluent escaping EBPR. As a result, P removal efficiency decreased dramatically with the increase of C/P r</p><p> (18 kgCOD/kgN reported by Zeynep et al. [18]). The lack of soluble organic carbon limited
33、the P storage capacity; as a result, the TP removal efficiency decreased with the increase of C/P ratio from 42 to 66.5. On the other hand, Filipe et al. [14] observed that the presence of GAOs had important consequences
34、 on the phosphorus removal capability of BEPR systems: the competitive advantage of PAOs in BEPR systems was compromised because GAOs use the same substrate (VFAs) under the same conditions;</p><p> seen in
35、 Table 4 that the trends of COD removal efficiency was similar to that of different influent C/N ratios. Regardless of the influent C/P ratio, mean COD removal efficiency was always higher than 89%.</p><p>
36、 Conclusions</p><p> A laboratory A2O reactor system with steady denitrifying phosphorus removal was operated for around 1 year to treat synthetic brewery wastewater, so as to test the effect of influent C/
37、N and C/P ratios on biological nutrient removal performance; meanwhile, the spatial profiles of DO, pH and ORP sensors in such system were investigated at different C/N and C/P ratios. The results showed that influent C/
38、N ratio had significant effect on the TN and TP removal efficiencies. The optimal TN and TP rem</p><p> 在A2O工藝中污水組成對(duì)于脫氮除磷的影響以及控制</p><p><b> 1、摘要</b></p><p> 用一個(gè)有著穩(wěn)定脫氮
39、除磷性能的實(shí)驗(yàn)室厭氧—缺氧—好氧(即A2O)生物反應(yīng)器來進(jìn)行測(cè)試以確定進(jìn)水中C/N比(溶解性化學(xué)需氧量/總氮)和C/P比(溶解性化學(xué)需氧量/總磷)對(duì)模擬啤酒廢水的生物脫氮除磷的影響,同時(shí),這些系統(tǒng)之中存在的空間型物體像溶解氧、PH、氧化還原電位傳感器等都將被研究。結(jié)果表明,C/N比對(duì)于總氮、總磷的去除效率以及從缺氧段到好氧段的磷的吸收有著顯著的影響。當(dāng)進(jìn)水中的C/N保持在7.1到5時(shí),總氮和總磷的分別去除效率能夠達(dá)到最高。此外,當(dāng)總回流
40、比保持在3.5時(shí),發(fā)現(xiàn)從缺氧段到好氧段的磷的吸收比例與進(jìn)水中的C/N比成線性相關(guān)的關(guān)系,這個(gè)系數(shù)為R2(R=0.685)。雖然進(jìn)水中的C/P比對(duì)于總氮的去除效率影響不大,不過它對(duì)于總磷的去除效率有重要的影響。此外,在進(jìn)水中的C/P比為42的時(shí)候,總磷的去除效率能夠達(dá)到最高。另一方面,通過觀測(cè)一些典型的因素像溶解氧、PH、氧化還原電位傳感器,能夠發(fā)現(xiàn)它們?cè)诓煌珻/N比、C/P比的進(jìn)水中有著相似的趨勢(shì)。有人建議使用簡(jiǎn)單的在線傳感器,這樣,構(gòu)
41、筑物的運(yùn)行狀態(tài)就很一目了然了。</p><p><b> 2、關(guān)鍵詞</b></p><p> A2O工藝;C/N比值;C/N比值;溶解氧;PH;氧化還原電位。</p><p><b> 3、試驗(yàn)程序</b></p><p> 這個(gè)研究所用的模擬啤酒廢水包含(每公升):啤酒為(乙醇含量3.5
42、%)2.8–3.4 mL;氯化銨為0.20–0.3 g;磷酸二氫鉀為0.02–0.08 g;七水硫酸鎂為0.05 g;碳酸氫鈉為0.05–0.15 g;二水氯化鈣為0.01 g。PH通過加碳酸氫鈉和氫氧化鈉的手段使之控制在7.2–7.6,溫度控制在20–22oC。當(dāng)進(jìn)水流量為150 L/d,內(nèi)循環(huán)比和污泥回流比分別控制在3.2 和 0.5,溶解氧控制在2–3 mg/L,污泥齡大約為12天時(shí),厭氧、缺氧、好氧反應(yīng)器中的污泥齡相應(yīng)為3天,2
43、.4天和6.6天。</p><p> 在整個(gè)實(shí)驗(yàn)中,混合液懸浮固體濃度(MLSS)都維持在3,000±500 mg/L。把進(jìn)水中的C/N比和C/P比分別控制在3到12和18到62之間,因?yàn)镃/N比和C/P比被認(rèn)為是在A2O工藝中影響脫氮除磷的兩個(gè)獨(dú)立變量。A2O反應(yīng)器多花了兩倍的細(xì)胞停留時(shí)間來獲得穩(wěn)定的C/N比和C/P比。這個(gè)反應(yīng)器中裝著的是從文昌污水處理廠(中國(guó)哈爾濱)運(yùn)來的活性污泥。這個(gè)系統(tǒng)花了兩
44、個(gè)月的時(shí)間來獲得了一些性質(zhì)穩(wěn)定的模擬啤酒廢水,這個(gè)實(shí)驗(yàn)進(jìn)行了大概一年,并且實(shí)驗(yàn)分成了兩部分,實(shí)驗(yàn)數(shù)據(jù)見圖一中的a、b與表一。</p><p> 圖一:a圖與b圖 </p><p> 圖a.總氮去除效率隨進(jìn)水C/N比的變化曲線 圖b.總磷去除效率隨進(jìn)水C/P比的變化曲線</p><p> 表一:整個(gè)實(shí)驗(yàn)時(shí)期數(shù)據(jù)&l
45、t;/p><p><b> 4、結(jié)果與討論</b></p><p> 進(jìn)水中C/N比對(duì)N、P去除的影響</p><p> 圖a、b分別表示了當(dāng)進(jìn)水中C/N比保持在40—45時(shí),在不同C/N比的條件下TN和TP的去除效率,從圖a中可以看出,當(dāng)C/N比從3增加到7.1時(shí),總氮的去除效率保持著穩(wěn)定的增長(zhǎng);當(dāng)C/N比為7.1時(shí),總氮的平均去除效率能夠
46、達(dá)到80.3%。然而,當(dāng)C/N比從7.1增加至12時(shí),總氮的去除效率則逐漸的下降。</p><p> 在下表二中可以看出,當(dāng)進(jìn)水的平均C/N比大約為3.5時(shí),總氮的去除效率為67.2%,出水總氮濃度為24.18mg/L。在這種情況下,有機(jī)污染物負(fù)荷僅僅只有0.66 mgCOD/(m3/d),硝酸鹽濃度在好氧段末段區(qū)域的濃度僅為25.2mg/L,造這種現(xiàn)象的主要原因就是水中原儲(chǔ)存的PHB加上外來的碳源進(jìn)入缺氧區(qū),
47、這樣就降低了從好氧區(qū)末端循環(huán)過來的硝酸鹽的相關(guān)濃度。</p><p> 表二:在不同區(qū)域不同C/N比條件下總氮、總磷、COD、NO3——N的濃度</p><p> 在下表三中能夠看出,COD/NOx僅為1.64 kgCOD/kgN;然而,為了實(shí)現(xiàn)完全的脫氮,沒有生物量增長(zhǎng)造成的PHB儲(chǔ)存的影響,C/N比是理論上的最小值,這個(gè)值為2.86 kgCOD/kgN。但是由于微生物的生長(zhǎng)繁殖,C
48、/N比通常在4kgCOD/kgN左右,所以,不可能實(shí)現(xiàn)完全意義上的脫氮。當(dāng)進(jìn)水C/N比從3.5增加至7.1時(shí),相應(yīng)的總氮去除效率增加了12.99%。因而,進(jìn)水中C/N比的提高能夠使總氮的去除效率提高, 因?yàn)橄鄳?yīng)的COD/NOx從5.42kgCOD/kgN增加至了9.89kgCOD/kgN。但是當(dāng)進(jìn)水中的C/N比從7.1增加到9.5時(shí),總氮的去除效率有些輕微的減少,從去除率為80%處(出水濃度為7.5)減少至去除率為76.42%(出水濃度
49、為9,5),即使是在缺氧區(qū)相應(yīng)的COD/NOx比增加到了14.28kgCOD/kgN。結(jié)果表明,硝化作用的能力能夠在某種程度上被有機(jī)負(fù)荷達(dá)1.02mgCOD/(m3·d)的高濃度進(jìn)水所抑制。在表二中可知,出水硝酸鹽濃度與出水總氮濃度的比例從95.4%(濃度為7.5)減少至81.7%(濃度為9.5)。</p><p> 另一方面,這樣的趨勢(shì)也能夠從圖b中看出來,當(dāng)C/N比從3增加到5時(shí),這導(dǎo)致了總磷的去
50、除效率逐漸的增加,總磷的平均去除效率要大于90%,這就意味著出水總磷的濃度要小于1mg/L。這顯示了進(jìn)水中的C/N比即使很低,不過因?yàn)橛蟹聪趸哿拙拇嬖?,所以C/N比對(duì)總磷去除效率的影響也不是很大,然而,當(dāng)C/N比從5增加至12時(shí),總磷的去除效率有些減少,并且在C/N比高于7.5的時(shí)候它幾乎是呈直線的減少。</p><p> 表三:缺氧區(qū)在不同進(jìn)水C/N比條件下C/NOx 比和 C/PO4比</p>
51、;<p> 有一些學(xué)者指出,在厭氧區(qū),再高的有機(jī)負(fù)荷,可利用的CAD也不會(huì)被聚磷菌完全地利用,多余的COD則被聚糖菌的生長(zhǎng)繁殖所利用,這就導(dǎo)致了活性污泥中聚磷菌的減少。根據(jù)表二,能夠進(jìn)行如下計(jì)算:隨著有機(jī)負(fù)荷的增加,釋放每單位磷所要消耗的COD也在逐漸的增加,當(dāng)進(jìn)水中C/N比為3.5,5.1,7.1和9.5時(shí),釋放每一單位磷所需要的COD值分別為4.94,5.96,7.29和18.24mgCOD/mgP。此外,進(jìn)水中C/
52、N比越高,由于碳源過多的緣故,硝化作用的效率就越低,同樣,因?yàn)镃OD/PO4值過高,導(dǎo)致了缺氧段磷去除的不充分,這個(gè)COD/PO4值能夠達(dá)到26.54 kg COD/kg P(理論上最小的C/P比為18 kg基質(zhì)COD/kg P),這就減少了磷的去除效率的進(jìn)一步增加。所以,總磷的去除效率隨著C/N比的增加而降低。</p><p> 進(jìn)水中C/P比對(duì)N、P去除的影響</p><p><
53、;b> 圖二:a圖與b圖</b></p><p> a:總氮去除效率隨進(jìn)水C/P比的變化曲線 b:總磷去除效率隨進(jìn)水C/P比的變化曲線</p><p> 從圖二可以看出在進(jìn)水的C/P比不同時(shí),總氮和總磷的去除效率的變化情況,進(jìn)水中C/N比保持在7—7.5。從圖二.a中能夠看出來C/P比很難影響到總氮的去除效率,在有機(jī)負(fù)荷恒定的情況下,且在進(jìn)水中的C/P比不同的
54、情況下,總氮的去除效率要高于75%。</p><p> 表四:在不同區(qū)域不同C/P比條件下總氮、總磷、COD、NO3——N的濃度</p><p> 在上表四中可以知道,在缺氧區(qū),當(dāng)四個(gè)C/P比的平均值分別為55,45,34,和23時(shí),NO3——N和的去除效率分別在70%—85%、60%—71%之間。根據(jù)表五,進(jìn)水有機(jī)負(fù)荷幾乎都一樣,進(jìn)入缺氧區(qū)的PHB的濃度隨著進(jìn)水中C/P比的增加而減少
55、。然而COD濃度則隨著進(jìn)水中C/P比的增加而增加。結(jié)果表明,厭氧池中的大部分的COD都被合成成了PHB,PHB提供了內(nèi)部碳源來完成C/P比很低的時(shí)候的脫氮作用,當(dāng)情況相反時(shí),即C/P很高時(shí),實(shí)驗(yàn)結(jié)果與Ma等人的報(bào)告結(jié)果相一致。另一方面,過量的COD進(jìn)入缺氧區(qū),造成C/P比很高,這這就抑制了缺氧段磷的吸收,但缺氧區(qū)的COD/NOx比值總是大于需求值,正如表五所顯示的那樣(最小值為6.61kgCOD/kgN大于4kg基質(zhì)COD/kgN);脫
56、氮?jiǎng)┍蛔鳛橥獠刻荚磥砜焖俚赝瓿擅摰饔?。因此,進(jìn)水中C/P比的變化很難影響到總氮的去除效率。然而,當(dāng)C/P比從21.9增加到42時(shí),總磷的去除效率隨著C/P比的增加而增加,在C/P比接近42的時(shí)候,總磷的平均去除率要高于97%,然后從圖二.b中可以看出,總磷的去除率隨著C/P比值的增加(從42增加到66.5)而減少。</p><p> 表五:不同的進(jìn)水C/P比值下缺氧段中C/NOx比值、C/PO4比值</
57、p><p> Yagci等人說明了在C/P比值比較高的情況下,現(xiàn)存的有機(jī)碳(主要為VFA)要多于所必需的碳源的數(shù)量,并且要供應(yīng)所有可以利用的磷,但是因?yàn)榱资怯邢薜?,這樣的結(jié)果那就是全部的磷都被去除了。然而,當(dāng)磷不再受低C/P比的限制時(shí),磷的儲(chǔ)存容量還受到缺乏可溶性有機(jī)碳的限制,并且強(qiáng)化生物除磷不能去除所有的磷,所以出水中總是會(huì)有一定濃度的磷。結(jié)果就是,磷的去除效率竟然戲劇性地隨著C/P比的增加而減少?;诒砦?,實(shí)驗(yàn)
58、的結(jié)果同樣與Yagci等人的報(bào)告結(jié)果相符。能夠看出COD/PO4比隨著進(jìn)水中C/P比的增加而增加,當(dāng)進(jìn)水C/P比為45時(shí),COD/PO4比為18.63 kgCOD/kgP,這個(gè)值要大于Zeynep等人說的必須的最小值:18 kgCOD/kgP。由于可溶性有機(jī)碳的缺乏限制了磷的儲(chǔ)存容量;結(jié)果就是,隨著C/P比從42增加到66.5時(shí),總磷的去除效率反而減少。另一方面,菲利普等人觀測(cè)到,在強(qiáng)化生物除磷工藝系統(tǒng)中,聚糖菌的存在對(duì)于磷的去除能力有
59、著重要的影響;在強(qiáng)化生物除磷工藝中,聚磷菌以前的競(jìng)爭(zhēng)性優(yōu)勢(shì)已經(jīng)沒有了,因?yàn)榫厶蔷谕粭l件下使用的是同一種基質(zhì)(有機(jī)酸);但是強(qiáng)化生物除磷系統(tǒng)中,如果有大量</p><p><b> 5、結(jié)論</b></p><p> 用一個(gè)有著穩(wěn)定脫氮除磷效果的實(shí)驗(yàn)室A2O反應(yīng)器系統(tǒng)來進(jìn)行處理模擬啤酒廢水的實(shí)驗(yàn),這個(gè)實(shí)驗(yàn)進(jìn)行了將近一年的時(shí)間,主要用來測(cè)試不同進(jìn)水中的C/N、C/
60、P比值對(duì)生物養(yǎng)分去除的效果;同時(shí),在進(jìn)水中C/N、C/P比值不同的情況下,對(duì)這些系統(tǒng)中間的溶解氧、PH以及氧化還原電位感應(yīng)器進(jìn)行測(cè)試。結(jié)果顯示,進(jìn)水中的C/N比對(duì)于總氮和總磷的去除效率有重要的影響。當(dāng)C/N比值在范圍5—7.1之間時(shí),能夠達(dá)到總氮和總磷的最佳去除效率。此外,在總回流比恒定的情況下,發(fā)現(xiàn)從缺氧區(qū)到好氧區(qū)的磷的吸收與進(jìn)水中的C/N比呈線性關(guān)系。進(jìn)水中的C/N比對(duì)于總磷的去除效率有重大的影響,然而對(duì)于總磷的去除效率卻幾乎沒有影
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- BIOLAK型A2O工藝脫氮除磷生產(chǎn)性試驗(yàn)研究.pdf
- 城市污水A2-O工藝脫氮除磷試驗(yàn)研究.pdf
- 填料型a2o工藝除磷效能
- 填料型a2o工藝除磷效能
- A2-O工藝脫氮除磷及其優(yōu)化控制的研究.pdf
- 化學(xué)除磷強(qiáng)化A2-O工藝脫氮除磷試驗(yàn)研究.pdf
- A-A-O工藝處理城市污水除磷脫氮性能試驗(yàn)研究.pdf
- 改良型A2-O脫氮除磷工藝研究.pdf
- 污水處理外文翻譯---de型氧化溝生物脫氮除磷工藝
- 外文翻譯---de型氧化溝生物脫氮除磷工藝
- A2-O-MBNR聯(lián)合工藝脫氮除磷性能研究.pdf
- A2-O及其變型工藝脫氮除磷試驗(yàn)研究.pdf
- 污水處理外文翻譯--在一個(gè)a2o-mbr反應(yīng)器中實(shí)現(xiàn)污泥的脫氮除磷技術(shù)
- 污水處理外文翻譯--在一個(gè)a2o-mbr反應(yīng)器中實(shí)現(xiàn)污泥的脫氮除磷技術(shù)
- 顆粒有機(jī)物對(duì)A2-O工藝脫氮除磷的影響.pdf
- 污泥水解酸化液作碳源強(qiáng)化低cn比a2o工藝脫氮除磷效果的研究
- 課程設(shè)計(jì)-城鎮(zhèn)污水脫氮除磷工藝設(shè)計(jì)
- 改進(jìn)A2-O工藝(A2-O-MBNR聯(lián)合工藝)脫氮除磷性能研究.pdf
- a2_o生物同步脫氮除磷及其改良工藝進(jìn)展
- 污水處理外文翻譯--在一個(gè)A2O-MBR反應(yīng)器中實(shí)現(xiàn)污泥的脫氮除磷技術(shù).doc
評(píng)論
0/150
提交評(píng)論