機械制造及其自動化課程設計---單缸柴油機活塞結構設計計算_第1頁
已閱讀1頁,還剩33頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  摘 要</b></p><p>  本文對單缸柴油機的主要零部件(活塞)進行了結構設計計算,并對活塞進行了有關運動學和動力學的理論分析與實體模型的創(chuàng)建(運用Pro/E)。</p><p>  首先,以運動學和動力學的理論知識為依據(jù),對曲柄連桿機構的運動規(guī)律以及在運動中的受力等問題進行詳盡的分析,并得到了精確的分析結果。其次對活塞組進行詳

2、細的結構設計,并進行了結構強度和剛度的校核。再次,應用三維CAD軟件:Pro/Engineer建立了活塞的幾何模型,在此工作的基礎上,利用Pro/E軟件的裝配功能,將曲柄連桿機構的各組成零件裝配成活塞組件、連桿組件和曲軸組件進行裝配并進行運動仿真分析。</p><p>  關鍵字:受力分析;運動分析;Pro/E建模</p><p><b>  目錄</b></p

3、><p><b>  第1章引言1</b></p><p>  1.1 選題背景1</p><p>  1.2 研究目標和意義1</p><p>  1.3 研究主要內容2</p><p>  第2章活塞運動規(guī)律的研究3</p><p>  2.1 活塞位移4&

4、lt;/p><p>  2.2 活塞的速度5</p><p>  2.3 活塞的加速度5</p><p>  第3章活塞組的設計6</p><p>  3.1 活塞的設計6</p><p>  3.1.1 活塞的工作條件和設計要求6</p><p>  3.1.2 活塞的材料7<

5、/p><p>  3.1.3 活塞頭部的設計7</p><p>  3.1.4 活塞裙部的設計12</p><p>  3.2 活塞銷的設計15</p><p>  3.2.1 活塞銷的結構、材料15</p><p>  3.2.2 活塞銷強度和剛度計算15</p><p>  3.3 活

6、塞銷座16</p><p>  3.3.1 活塞銷座結構設計16</p><p>  3.3.2 驗算比壓力17</p><p>  3.4 活塞環(huán)設計及計算17</p><p>  3.4.1 活塞環(huán)形狀及主要尺寸設計17</p><p>  3.4.2 活塞環(huán)強度校核17</p><

7、p>  3.5 本章小結19</p><p>  第4章活塞的建模20</p><p>  4.1 對Pro/E軟件基本功能的介紹20</p><p>  4.2 活塞的建模20</p><p>  4.2.1 活塞的特點分析20</p><p>  4.2.2 活塞的建模思路20</p>

8、;<p>  4.2.3 活塞的建模步驟21</p><p><b>  結束語26</b></p><p><b>  參考文獻27</b></p><p><b>  致謝28</b></p><p><b>  引言</b>&l

9、t;/p><p><b>  選題背景</b></p><p>  多剛體動力學模擬是近十年發(fā)展起來的機械計算機模擬技術,提供了在設計過程中對設計方案進行分析和優(yōu)化的有效手段,在機械設計領域獲得越來越廣泛的應用。它是利用計算機建造的模型對實際系統(tǒng)進行實驗研究,將分析的方法用于模擬實驗,充分利用已有的基本物理原理,采用與實際物理系統(tǒng)實驗相似的研究方法,在計算機上運行仿真實驗

10、。目前多剛體動力學模擬軟件主要有Pro/Mechanics,Working model 3D,ADAMS等。多剛體動力學模擬軟件的最大優(yōu)點在于分析過程中無需編寫復雜仿真程序,在產(chǎn)品的設計分析時無需進行樣機的生產(chǎn)和試驗。對內燃機產(chǎn)品的部件裝配進行機構運動仿真,可校核部件運動軌跡,及時發(fā)現(xiàn)運動干涉;對部件裝配進行動力學仿真,可校核機構受力情況;根據(jù)機構運動約束及保證性能最優(yōu)的目標進行機構設計優(yōu)化,可最大限度地滿足性能要求,對設計提供指導和修

11、正[2]。目前國內大學和企業(yè)已經(jīng)已進行了機構運動、動力學仿真方面的研究和局部應用,能在設計初期及時發(fā)現(xiàn)內燃機曲柄連桿機構干涉,校核配氣機構運動、動力學性能等,為設計人員提供了基本的設計依據(jù)[3-4]。</p><p>  目前國內外對發(fā)動機曲柄連桿機構的動力學分析的方法很多,而且已經(jīng)完善和成熟。其中機構運動學分析是研究兩個或兩個以上物體間的相對運動,即位移、速度和加速度的變化關系:動力學則是研究產(chǎn)生運動的力。發(fā)動

12、機曲柄連桿機構的動力學分析主要包括氣體力、慣性力、軸承力和曲軸轉矩等的分析,傳統(tǒng)的內燃機工作機構動力學、運動學分析方法主要有圖解法和解析法[5]。</p><p><b>  研究目標和意義</b></p><p>  曲柄連桿機構是發(fā)動機的傳遞運動和動力的機構,通過它把活塞的往復直線運動轉變?yōu)榍S的旋轉運動而輸出動力。因此,曲柄連桿機構是發(fā)動機中主要的受力部件,其工

13、作可靠性就決定了發(fā)動機工作的可靠性。隨著發(fā)動機強化指標的不斷提高,機構的工作條件更加復雜。在多種周期性變化載荷的作用下,如何在設計過程中保證機構具有足夠的疲勞強度和剛度及良好的動靜態(tài)力學特性成為曲柄連桿機構設計的關鍵性問題[1]。</p><p>  通過設計,確定發(fā)動機曲柄連桿機構的總體結構和零部件結構,包括必要的結構尺寸確定、運動學和動力學分析、材料的選取等,以滿足實際生產(chǎn)的需要。</p>&l

14、t;p>  在傳統(tǒng)的設計模式中,為了滿足設計的需要須進行大量的數(shù)值計算,同時為了滿足產(chǎn)品的使用性能,須進行強度、剛度、穩(wěn)定性及可靠性等方面的設計和校核計算,同時要滿足校核計算,還需要對曲柄連桿機構進行動力學分析。</p><p>  為了真實全面地了解機構在實際運行工況下的力學特性,本文采用了多體動力學仿真技術,針對機構進行了實時的,高精度的動力學響應分析與計算,因此本研究所采用的高效、實時分析技術對提高分

15、析精度,提高設計水平具有重要意義,而且可以更直觀清晰地了解曲柄連桿機構在運行過程中的受力狀態(tài),便于進行精確計算,對進一步研究發(fā)動機的平衡與振動、發(fā)動機增壓的改造等均有較為實用的應用價值。</p><p><b>  研究主要內容</b></p><p>  對內燃機運行過程中曲柄連桿機構受力分析進行深入研究,其主要的研究內容有:</p><p>

16、; ?。?)對曲柄連桿機構進行運動學和動力學分析,分析曲柄連桿機構中各種力的作用情況,并根據(jù)這些力對曲柄連桿機構的主要零部件進行強度、剛度等方面的計算和校核,以便達到設計要求;</p><p> ?。?)分析曲柄連桿機構中主要零部件如活塞,曲軸,連桿等的工作條件和設計要求,進行合理選材,確定出主要的結構尺寸,并進行相應的尺寸檢驗校核,以符合零件實際加工的要求;</p><p><b&

17、gt;  活塞運動規(guī)律的研究</b></p><p>  中心曲柄連桿機構簡圖如圖2.1所示,圖2.1中氣缸中心線通過曲軸中心O,OB為曲柄,AB為連桿,B為曲柄銷中心,A為連桿小頭孔中心或活塞銷中心。</p><p>  當曲柄按等角速度旋轉時,曲柄OB上任意點都以O點為圓心做等速旋轉運動,活塞A點沿氣缸中心線做往復運動,連桿AB則做復合的平面運動,其大頭B點與曲柄一端相連,

18、做等速的旋轉運動,而連桿小頭與活塞相連,做往復運動。在實際分析中,為使問題簡單化,一般將連桿簡化為分別集中于連桿大頭和小頭的兩個集中質量,認為它們分別做旋轉和往復運動,這樣就不需要對連桿的運動規(guī)律進行單獨研究[9]。</p><p>  圖2.1 曲柄連桿機構運動簡圖</p><p>  活塞做往復運動時,其速度和加速度是變化的。它的速度和加速度的數(shù)值以及變化規(guī)律對曲柄連桿機構以及發(fā)動機整

19、體工作有很大影響,因此,研究曲柄連桿機構運動規(guī)律的主要任務就是研究活塞的運動規(guī)律。</p><p><b>  活塞位移</b></p><p>  假設在某一時刻,曲柄轉角為,并按順時針方向旋轉,連桿軸線在其運動平面內偏離氣缸軸線的角度為,如圖2.1 所示。</p><p>  當=時,活塞銷中心A在最上面的位置A1,此位置稱為上止點。當=1

20、80時,A點在最下面的位置A2,此位置稱為下止點。</p><p>  此時活塞的位移x為:</p><p><b>  x===(r+)</b></p><p>  = (2.1)</p><p><b>  式中:—連桿比。</b></p&

21、gt;<p>  式(2.1)可進一步簡化,由圖2.1可以看出:</p><p>  即 </p><p>  又由于 (2.2)</p><p>  將式(2.2)帶入式(2.1)得:</p><p>  x=

22、 (2.3)</p><p>  式(2.3)是計算活塞位移x的精確公式,為便于計算,可將式(2.3)中的根號按牛頓二項式定理展開,得:</p><p><b>  …</b></p><p>  考慮到≤ 1∕3,其二次方以上的數(shù)值很小,可以忽略不計。只保留前兩項,則</p><p><

23、;b> ?。?.4)</b></p><p>  將式(2.4)帶入式(2.3)得</p><p><b> ?。?.5)</b></p><p><b>  活塞的速度 </b></p><p>  將活塞位移公式(2.1)對時間t進行微分,即可求得活塞速度的精確值為</p

24、><p><b>  (2.6)</b></p><p>  將式(2.5)對時間微分,便可求得活塞速度得近似公式為:</p><p><b> ?。?.7)</b></p><p>  從式(2.7)可以看出,活塞速度可視為由與兩部分簡諧運動所組成。</p><p>  當或時

25、,活塞速度為零,活塞在這兩點改變運動方向。當時,,此時活塞得速度等于曲柄銷中心的圓周速度。</p><p><b>  活塞的加速度</b></p><p>  將式(2.6)對時間微分,可求得活塞加速度的精確值為:</p><p><b> ?。?.8)</b></p><p>  將式(2.7)

26、對時間為微分,可求得活塞加速度的近似值為:</p><p><b> ?。?.9)</b></p><p>  因此,活塞加速度也可以視為兩個簡諧運動加速度之和,即由與兩部分組成。</p><p><b>  活塞組的設計</b></p><p><b>  活塞的設計</b>

27、</p><p>  活塞組包括活塞、活塞銷和活塞環(huán)等在氣缸里作往復運動的零件,它們是發(fā)動機中工作條件最嚴酷的組件。發(fā)動機的工作可靠性與使用耐久性,在很大程度上與活塞組的工作情況有關。</p><p>  活塞的工作條件和設計要求</p><p><b>  1、活塞的機械負荷</b></p><p>  在發(fā)動機工作中

28、,活塞承受的機械載荷包括周期變化的氣體壓力、往復慣性力以及由此產(chǎn)生的側向作用力。在機械載荷的作用下,活塞各部位了各種不同的應力:活塞頂部動態(tài)彎曲應力;活塞銷座承受拉壓及彎曲應力;環(huán)岸承受彎曲及剪應力。此外,在環(huán)槽及裙部還有較大的磨損。</p><p>  為適應機械負荷,設計活塞時要求各處有合適的壁厚和合理的形狀,即在保證足夠的強度、剛度前提下,結構要盡量簡單、輕巧,截面變化處的過渡要圓滑,以減少應力集中。<

29、;/p><p><b>  2、活塞的熱負荷</b></p><p>  活塞在氣缸內工作時,活塞頂面承受瞬變高溫燃氣的作用,燃氣的最高溫度可達。因而活塞頂?shù)臏囟纫埠芨摺;钊粌H溫度高,而且溫度分布不均勻,各點間有很大的溫度梯度,這就成為熱應力的根源,正是這些熱應力對活塞頂部表面發(fā)生的開裂起了重要作用。</p><p><b>  3、磨

30、損強烈</b></p><p>  發(fā)動機在工作中所產(chǎn)生的側向作用力是較大的,同時,活塞在氣缸中的高速往復運動,活塞組與氣缸表面之間會產(chǎn)生強烈磨損,由于此處潤滑條件較差,磨損情況比較嚴重。</p><p>  4、活塞組的設計要求</p><p>  (1)要選用熱強度好、耐磨、比重小、熱膨脹系數(shù)小、導熱性好、具有良好減磨性、工藝性的材料;</p&

31、gt;<p> ?。?)有合理的形狀和壁厚。使散熱良好,強度、剛度符合要求,盡量減輕重量,避免應力集中;</p><p>  (3)保證燃燒室氣密性好,竄氣、竄油要少又不增加活塞組的摩擦損失;</p><p> ?。?)在不同工況下都能保持活塞與缸套的最佳配合;</p><p> ?。?)減少活塞從燃氣吸收的熱量,而已吸收的熱量則能順利地散走;<

32、/p><p>  (6)在較低的機油耗條件下,保證滑動面上有足夠的潤滑油。</p><p><b>  活塞的材料</b></p><p>  根據(jù)上述對活塞設計的要求,活塞材料應滿足如下要求:</p><p> ?。?)熱強度高。即在高溫下仍有足夠的機械性能,使零件不致?lián)p壞;</p><p>  (

33、2)導熱性好,吸熱性差。以降低頂部及環(huán)區(qū)的溫度,并減少熱應力;</p><p>  (3)膨脹系數(shù)小。使活塞與氣缸間能保持較小間隙;</p><p> ?。?)比重小。以降低活塞組的往復慣性力,從而降低了曲軸連桿組的機械負荷和平衡配重;</p><p>  (5)有良好的減磨性能(即與缸套材料間的摩擦系數(shù)較?。?,耐磨、耐蝕;</p><p>

34、 ?。?)工藝性好,低廉。</p><p>  在發(fā)動機中,灰鑄鐵由于耐磨性、耐蝕性好、膨脹系數(shù)小、熱強度高、成本低、工藝性好等原因,曾廣泛地被作為活塞材料。但近幾十年來,由于發(fā)動機轉速日益提高,工作過程不斷強化,灰鑄鐵活塞因此比重大和導熱性差兩個根本缺點而逐漸被鋁基輕合金活塞所淘汰。</p><p>  鋁合金的優(yōu)缺點與灰鑄鐵正相反,鋁合金比重小,約占有灰鑄鐵的1/3,結構重量僅占鑄鐵活

35、塞的。因此其慣性小,這對高速發(fā)動機具有重大意義。鋁合金另一突出優(yōu)點是導熱性好,其熱傳導系數(shù)約為鑄鐵的倍,使活塞溫度顯著下降。對柴油機來說,采用鋁活塞還為提高壓縮比、改善發(fā)動機性能創(chuàng)造了重要的條件。</p><p>  共晶鋁硅合金是目前國內外應用最廣泛的活塞材料,既可鑄造,也可鍛造。含硅9%左右的亞共晶鋁硅合金,熱膨脹系數(shù)稍大一些,但由于鑄造性能好,適應大量生產(chǎn)工藝的要求,應用也很廣。</p>&l

36、t;p>  綜合分析,該發(fā)動機活塞采用鋁硅合金材料鑄造而成。</p><p><b>  活塞頭部的設計</b></p><p><b>  1、設計要點</b></p><p>  活塞頭部包括活塞頂和環(huán)帶部分,其主要功用是承受氣壓力,并通過銷座把它傳給連桿,同時與活塞環(huán)一起配合氣缸密封工質。因此,活塞頭部的設計要

37、點是:</p><p> ?。?)保證它具有足夠的機械強度與剛度,以免開裂和產(chǎn)生過大變形,因為環(huán)槽的變形過大勢必影響活塞環(huán)的正常工作;</p><p>  (2)保證溫度不過高,溫差小,防止產(chǎn)生過大的熱變形和熱應力,為活塞環(huán)的正常工作創(chuàng)造良好條件,并避免頂部熱疲勞開裂;</p><p> ?。?)尺寸盡可能緊湊,因為一般壓縮高度縮短1單位,整個發(fā)動機高度就可以縮短單

38、位,并顯著減輕活塞重量。而則直接受頭部尺寸的影響。</p><p><b>  2、壓縮高度的確定</b></p><p>  活塞壓縮高度的選取將直接影響發(fā)動機的總高度,以及氣缸套、機體的尺寸和質量。盡量降低活塞壓縮高度是現(xiàn)代發(fā)動機活塞設計的一個重要原則,壓縮高度是由火力岸高度、環(huán)帶高度和上裙尺寸構成的,即</p><p><b>

39、  =++</b></p><p>  為了降低壓縮高度,應在保證強度的基礎上盡量壓縮環(huán)岸、環(huán)槽的高度及銷孔的直徑。</p><p><b> ?。?)第一環(huán)位置</b></p><p>  根據(jù)活塞環(huán)的布置確定活塞壓縮高度時,首先須定出第一環(huán)的位置,即所謂火力岸高度。為縮小,當然希望盡可能小,但過小會使第一環(huán)溫度過高,導致活塞環(huán)彈

40、性松弛、粘結等故障。因此火力岸高度的選取原則是:在滿足第一環(huán)槽熱載荷要求的前提下,盡量取得小些。一般柴油機,為活塞直徑,該發(fā)動機的活塞標準直徑,確定火力岸高度為:</p><p><b> ?。?)環(huán)帶高度 </b></p><p>  為減小活塞高度,活塞環(huán)槽軸向高度應盡可能小,這樣活塞環(huán)慣性力也小,會減輕對環(huán)槽側面沖擊,有助于提高環(huán)槽耐久性。但太小,使制環(huán)工藝困難

41、。在小型高速內燃機上,一般氣環(huán)高,油環(huán)高。</p><p>  該發(fā)動機采用三道活塞環(huán),第一和第二環(huán)稱之為壓縮環(huán)(氣環(huán)),第三環(huán)稱之為油環(huán)。取,,。</p><p>  環(huán)岸的高度,應保證它在氣壓力造成的負荷下不會破壞。當然,第二環(huán)岸負荷要比第一環(huán)岸小得多,溫度也低,只有在第一環(huán)岸已破壞的情況下,它才可能被破壞。因此,環(huán)岸高度一般第一環(huán)最大,其它較小。實際發(fā)動機的統(tǒng)計表明,,,柴油機接近下

42、限。</p><p>  則 ,</p><p><b>  。</b></p><p><b>  因此,環(huán)帶高度。</b></p><p><b>  (3)上裙尺寸</b></p><p>  確定

43、好活塞頭部環(huán)的布置以后,壓縮高度H1最后決定于活塞銷軸線到最低環(huán)槽(油環(huán)槽)的距離h1。為了保證油環(huán)工作良好,環(huán)在槽中的軸向間隙是很小的,環(huán)槽如有較大變形就會使油環(huán)卡住而失效。所以在一般設計中,選取活塞上裙尺寸一般應使銷座上方油環(huán)槽的位置處于銷座外徑上面,并且保證銷座的強度不致因開槽而削弱,同時也不致因銷座處材料分布不均引起變形,影響油環(huán)工作。</p><p>  綜上所述,可以決定活塞的壓縮高度。對于柴油機,所

44、以 。</p><p>  則 。</p><p>  3、活塞頂和環(huán)帶斷面</p><p><b> ?。?)活塞頂</b></p><p>  活塞頂?shù)男螤钪饕Q于燃燒室的選擇和設計。僅從活塞設計角度,為了減輕活塞組的熱負荷和應力集中,希望采用受熱面積最小、加工最簡單的活

45、塞頂形狀,即平頂。大多柴柴油機正是采用平頂活塞,由于1.6L發(fā)動機為高壓縮比,因而采用近似于平頂?shù)幕钊?。實際統(tǒng)計數(shù)據(jù)表明,活塞頂部最小厚度,柴油機為,即。活塞頂接受的熱量,主要通過活塞環(huán)傳出。專門的實驗表明,對無強制冷卻的活塞來說,經(jīng)活塞環(huán)傳到氣缸壁的熱量占70~80%,經(jīng)活塞本身傳到氣缸壁的占10~20%,而傳給曲軸箱空氣和機油的僅占10%左右。所以活塞頂厚度應從中央到四周逐漸加大,而且過渡圓角應足夠大,使活塞頂吸收的熱量能順利地被導

46、至第二、三環(huán),以減輕第一環(huán)的熱負荷,并降低了最高溫度。</p><p>  活塞頭部要安裝活塞環(huán),側壁必須加厚,一般取,取為6.16mm,活塞頂與側壁之間應該采用較大的過渡圓角,一般取,取0.074為5.993mm.為了減少積炭和受熱,活塞頂表面應光潔,在個別情況下甚至拋光。復雜形狀的活塞頂要特別注意避免尖角,所有尖角均應仔細修圓,以免在高溫下熔化。</p><p><b>  

47、(2)環(huán)帶斷面</b></p><p>  為了保證高熱負荷活塞的環(huán)帶有足夠的壁厚使導熱良好,不讓熱量過多地集中在最高一環(huán),其平均值為。正確設計環(huán)槽斷面和選擇環(huán)與環(huán)槽的配合間隙,對于環(huán)和環(huán)槽工作的可靠性與耐久性十分重要。槽底圓角一般為0.2~0.5mm。活塞環(huán)岸銳邊必須有適當?shù)牡菇?,否則當岸部與缸壁壓緊出現(xiàn)毛刺時,就可能把活塞環(huán)卡住,成為嚴重漏氣和過熱的原因,但倒角過大又使活塞環(huán)漏氣增加。一般該倒角為

48、。</p><p><b> ?。?)環(huán)岸和環(huán)槽</b></p><p>  環(huán)岸和環(huán)槽的設計應保持活塞、活塞環(huán)正常工作,降低機油消耗量,防止活塞環(huán)粘著卡死和異常磨損,氣環(huán)槽下平面應與活塞軸線垂直,以保證環(huán)工作時下邊與缸桶接觸,減小向上竄機油的可能性。活塞環(huán)側隙在不產(chǎn)生上述損傷的情況下愈小愈好,目前,第一環(huán)與環(huán)槽側隙一般為0.05~0.1mm,二、三環(huán)適當小些,為0.

49、03~0.07mm,油環(huán)則更小些,這有利于活塞環(huán)工作穩(wěn)定和降低機油消耗量,側隙確定油環(huán)槽中必須設有回油孔,并均勻地布置再主次推力面?zhèn)?,回油孔對降低機油消耗量有重要意義,三道活塞環(huán)的開口間隙及側隙如表3.1所示:</p><p>  表3.1 活塞環(huán)的開口間隙及側隙</p><p>  活塞環(huán)的背隙比較大,以免環(huán)與槽底圓角干涉。一般氣環(huán)=0.5毫米,油環(huán)的則更大些,如圖3.1所示。</

50、p><p>  (4)環(huán)岸的強度校核</p><p>  在膨脹沖程開始時,在爆發(fā)壓力作用下,第一道活塞環(huán)緊壓在第一環(huán)岸上。由于節(jié)流作用,第一環(huán)岸上面的壓力比下面壓力大得多,不平衡力會在岸根產(chǎn)生很大的彎曲和剪切應力,當應力值超過鋁合金在其工作溫度下的強度極限或疲勞極限時,岸根有可能斷裂,專門的試驗表明,當活塞頂上作用著最高爆發(fā)壓力時,,,如圖3.2所示。</p><p>

51、;  已知=4.5,則,, </p><p>  圖3.1 環(huán)與環(huán)槽的配合間隙及環(huán)槽結構 圖3.2第一環(huán)岸的受力情況[10]</p><p>  環(huán)岸是一個厚、內外圓直徑為、的圓環(huán)形板,沿內圓柱面固定,要精確計算固定面的應力比較復雜,可以將其簡化為一個簡單的懸臂梁進行大致的計算。在通常的尺寸比例下,可假定槽底(岸根)直徑,環(huán)槽深為:</p><p&

52、gt;  于是作用在岸根的彎矩為</p><p><b> ?。?.1)</b></p><p>  而環(huán)岸根斷面的抗彎斷面系數(shù)近似等于</p><p>  所以環(huán)岸根部危險斷面上的彎曲應力</p><p><b> ?。?.2)</b></p><p><b> 

53、 同理得剪切應力為:</b></p><p><b>  (3.3)</b></p><p><b>  接合成應力公式為:</b></p><p><b> ?。?.4)</b></p><p>  考慮到鋁合金在高溫下的強度下降以及環(huán)岸根部的應力集中,鋁合金的許

54、用應力,,校核合格。</p><p><b>  活塞裙部的設計</b></p><p>  活塞裙部是指活塞頭部最低一個環(huán)槽以下的那部分活塞?;钊貧飧淄鶑瓦\動時,依靠裙部起導向作用,并承受由于連桿擺動所產(chǎn)生的側壓力。所以裙部的設計要求,是保證活塞得到良好的導向,具有足夠的實際承壓面積,能形成足夠厚的潤滑油膜,既不因間隙過大發(fā)生敲缸,引起噪音和加速損傷,也不因間隙過

55、小而導致活塞拉傷。</p><p>  分析活塞在發(fā)動機中工作時裙部的變形情況。首先,活塞受到側向力的作用。承受側向力作用的裙部表面,一般只是在兩個銷孔之間的弧形表面。這樣,裙部就有被壓偏的傾向,使它在活塞銷座方向上的尺寸增大;其次,由于加在活塞頂上的爆發(fā)壓力和慣性力的聯(lián)合作用,使活塞頂在活塞銷座的跨度內發(fā)生彎曲變形,使整個活塞在銷座方向上的尺寸變大;再次,由于溫度升高引起熱膨脹,其中銷座部分因壁厚較其它部分要厚

56、,所以熱膨脹比較嚴重。三種情況共同作用的結果都使活塞在工作時沿銷座方向漲大,使裙部截面的形狀變成為“橢圓”形,使得在橢圓形長軸方向上的兩個端面與氣缸間的間隙消失,以致造成拉毛現(xiàn)象。在這些因素中,機械變形影響一般來說并不嚴重,主要還是受熱膨脹產(chǎn)生變形的影響比較大。</p><p>  因此,為了避免拉毛現(xiàn)象,在活塞裙部與氣缸之間必須預先流出較大的間隙。當然間隙也不能留得過大,否則又會產(chǎn)生敲缸現(xiàn)象。解決這個問題的比較

57、合理的方法應該使盡量減少從活塞頭部流向裙部的熱量,使裙部的膨脹減低至最??;活塞裙部形狀應與活塞的溫度分布、裙部壁厚的大小等相適應。</p><p>  本文采用托板式裙部,這樣不僅可以減小活塞質量,而且裙部具有較大的彈性,可使裙部與氣缸套裝配間隙減小很多,也不會卡死。</p><p>  把活塞裙部的橫斷面設計成與裙部變形相適應的形狀。在設計時把裙部橫斷截面制成長軸是在垂直與活塞銷中心線方

58、向上,短軸平行于銷軸方向的橢圓形。常用的橢圓形狀是按下列公式設計的:</p><p><b> ?。?.4)</b></p><p>  式中、分別為橢圓的長短軸,如圖3.3所示。</p><p>  缸徑小于的裙部開槽的活塞,橢圓度()的大小,一般為。</p><p>  圖3.3 活塞銷裙部的橢圓形狀[9]</

59、p><p><b>  1、裙部的尺寸</b></p><p>  活塞裙部是側壓力的主要承擔者。為保證活塞裙表面能保持住必要厚度的潤滑油膜,其表面比壓不應超過一定的數(shù)值。因此,在決定活塞裙部長度是應保持足夠的承壓面積,以減少比壓和磨損。</p><p>  在確定裙部長度時,首先根據(jù)裙部比壓最大的允許值,決定需要的最小長度,然后按照結構上的要求加

60、以適當修改。</p><p>  裙部單位面積壓力(裙部比壓)按下式計算:</p><p><b> ?。?.5)</b></p><p>  式中:—最大側作用力,由動力計算求得,=2410.83</p><p><b>  —活塞直徑,;</b></p><p><

61、b>  —裙部高度,。</b></p><p><b>  取。</b></p><p><b>  則 </b></p><p>  一般發(fā)動機活塞裙部比壓值約為,所以設計合適。</p><p><b>  2、銷孔的位置</b></p>&l

62、t;p>  活塞銷與活塞裙軸線不相交,而是向承受膨脹側壓力的一面(稱為主推力面,相對的一面稱為次推力面)偏移了,這是因為,如果活塞銷中心布置,即銷軸線與活塞軸線相交,則在活塞越過上止點,側壓力作用方向改變時,活塞從次推力面貼緊氣缸壁的一面突然整個地橫掃過來變到主推力面貼緊氣缸壁的另一面,與氣缸發(fā)生“拍擊”,產(chǎn)生噪音,有損活塞耐久性。如果把活塞銷偏心布置,則能使瞬時的過渡變成分布的過渡,并使過渡時刻先于達到最高燃燒壓力的時刻,因此改

63、善了發(fā)動機的工作平順性。</p><p><b>  活塞銷的設計</b></p><p><b>  活塞銷的結構、材料</b></p><p>  1、活塞銷的結構和尺寸</p><p>  活塞銷的結構為一圓柱體,中空形式,可減少往復慣性質量,有效利用材料?;钊N與活塞銷座和連桿小頭襯套孔的連

64、接配合,采用“全浮式”?;钊N的外直徑,取,活塞銷的內直徑,取活塞銷長度,取</p><p><b>  2、活塞銷的材料</b></p><p>  活塞銷材料為低碳合金鋼,表面滲碳處理,硬度高、耐磨、內部沖擊韌性好。表面加工精度及粗糙度要求極高,高溫下熱穩(wěn)定性好。</p><p>  活塞銷強度和剛度計算</p><p&

65、gt;  由運動學知,活塞銷表面受到氣體壓力和往復慣性力的共同作用,總的作用力,活塞銷長度,連桿小頭高度,活塞銷跨度。</p><p>  1、最大彎曲應力計算</p><p>  活塞銷中央截面的彎矩為</p><p><b> ?。?.6)</b></p><p>  空心銷的抗彎斷面系數(shù)為,</p>

66、<p>  其中 </p><p>  所以彎曲應力為 </p><p>  即 </p><p><b> ?。?.7)</b></p><p>  2、最大

67、剪切應力計算</p><p>  最大剪切應力出現(xiàn)在銷座和連桿小頭之間的截面上。橫斷截面的最大剪切應力發(fā)生在中性層上[14],其值按下式計算:</p><p><b> ?。?.8)</b></p><p>  已知許用彎曲應力;許用剪切應力,那么校核合格。</p><p><b>  活塞銷座</b&g

68、t;</p><p><b>  活塞銷座結構設計 </b></p><p>  活塞銷座用以支承活塞,并由此傳遞功率。銷座應當有足夠的強度和適當?shù)膭偠?,使銷座能夠適應活塞銷的變形,避免銷座產(chǎn)生應力集中而導致疲勞斷裂;同時要有足夠的承壓表面和較高的耐磨性。</p><p>  活塞銷座的內徑,活塞銷座外徑一般等于內徑的倍,取,</p>

69、;<p>  活塞銷的彎曲跨度越小,銷的彎曲變形就越小,銷—銷座系統(tǒng)的工作越可靠,所以,一般設計成連桿小頭與活塞銷座開擋之間的間隙為,但當制造精度有保證時,兩邊共就足夠了,取間隙為。</p><p><b>  驗算比壓力</b></p><p><b>  銷座比壓力為:</b></p><p><b

70、> ?。?.9)</b></p><p><b>  一般。</b></p><p><b>  活塞環(huán)設計及計算</b></p><p>  活塞環(huán)形狀及主要尺寸設計</p><p>  該發(fā)動機采用三道活塞環(huán),第一和第二環(huán)為氣環(huán),第三環(huán)為油環(huán)。</p><p

71、>  第一道活塞環(huán)為桶形扭曲環(huán),材料為球墨鑄鐵,表面鍍鉻。桶形環(huán)與缸筒為圓弧接觸,對活塞擺動適應性好,并容易形成楔形潤滑油膜。</p><p>  第二道活塞環(huán)為鼻形環(huán),材料為鑄鐵,鼻形環(huán)可防止泵油現(xiàn)象,活塞向上運動時潤滑效果好。</p><p>  第三道是油環(huán),是鋼帶組成環(huán),重量輕,比壓高,刮油能力強。 </p><p>  活塞環(huán)的主要尺寸為環(huán)的高度、環(huán)

72、的徑向厚度。氣環(huán),油環(huán),取,,。活塞環(huán)的徑向厚度,一般推薦值為:當缸徑為時,,取。</p><p><b>  活塞環(huán)強度校核</b></p><p>  活塞環(huán)在工作時,因剪應力和軸向力影響較小,所以只計算彎矩?;钊h(huán)的平均半徑與徑向厚度之比一般都大于5,所以可按直桿彎曲正應力公式計算[9]。</p><p>  1、工作狀態(tài)下的彎曲應力&l

73、t;/p><p>  活塞斷面的最大彎矩為:</p><p><b>  (3.10)</b></p><p>  由此可得最大彎曲應力為:</p><p><b> ?。?.11)</b></p><p>  對于斷面均壓環(huán)其開口間隙與活塞環(huán)平均接觸壓力之間有如下關系:<

74、/p><p><b>  (3.12)</b></p><p>  將式(3.12)帶入(3.11)并整理得:</p><p><b> ?。?.13)</b></p><p>  式中:—材料的彈性模量,對合金鑄鐵;</p><p>  —活塞環(huán)的開口間隙,,取為;</p

75、><p><b>  —氣缸直徑,;</b></p><p><b>  —活塞環(huán)徑向厚度,</b></p><p>  則 </p><p>  活塞環(huán)工作時的許用彎曲應力為,則校核合格。</p><p><b>  2、套裝應力<

76、/b></p><p>  活塞環(huán)往活塞上套裝時,要把切口扳得比自由狀態(tài)的間隙還大,對于均壓環(huán),此時的正對切口處的最大套裝彎曲應力為: </p><p><b>  (3.14)</b></p><p>  式中:—與套裝方法有關的系數(shù),根據(jù)套裝方法的不同,其值為,一般取,則 </p><

77、p>  因環(huán)的套裝時在常溫下進行的,承受的應力時間甚短,所以套裝應力的許用值大于工作應力的許用值,所以校核合格。</p><p><b>  本章小結 </b></p><p>  在活塞的設計過程中,分別確定了活塞、活塞銷、活塞銷座和活塞環(huán)的主要的結構參數(shù),分析了其工作條件,總結了設計要求,選擇合適的材料,并分別進行了相關的強度和剛度校核,使其符合實際要求。&

78、lt;/p><p><b>  活塞的建模</b></p><p>  對Pro/E軟件基本功能的介紹</p><p>  Pro/E軟件是美國PTC公司推出的大型CAD/CAM/CAE一體化軟件。無論是造型設計、工程出圖,以及3D裝配等方面,Pro/E都具有操作容易、使用方便、可動態(tài)修改的特點。</p><p>  Pro

79、/E更是以其基于特征的參數(shù)化設計、單一數(shù)據(jù)庫下的全相關性等新概念而聞名于世。另外還具有模具設計,動態(tài)、靜態(tài)干涉檢查,計算質量特征(如質心、慣性矩)等功能模塊。用Pro/E創(chuàng)建的三維參數(shù)化零件模型,不但可以在屏幕上自由的翻轉動態(tài)觀察結構形體,更可以進行方便的動態(tài)修改和調整。進行力學分析、運動分析、數(shù)控加工等。</p><p><b>  活塞的建模</b></p><p&g

80、t;<b>  活塞的特點分析</b></p><p>  活塞是在高溫、高壓、高腐蝕的條件下,在汽缸內做高速往復直線運動的。要適應這樣惡劣的工作條件,必須具有相應的結構。</p><p> ?。?)活塞頂部外表面設計成凹面形,以利于燃燒室內的氣體形成渦流,使燃料與空氣混合得更均勻,燃燒得更充分。</p><p>  (2)在活塞的頭部有三道環(huán)

81、形槽,上邊兩道環(huán)形槽為氣環(huán)槽,下邊一條為油環(huán)槽。</p><p> ?。?)活塞的裙部在活塞做直線往復運動時起導向作用。裙部頂端有兩個往里凸起的銷座。</p><p>  (4)活塞裙部的軸截面應制成鼓形,活塞裙部的橫截面應制成橢圓形。由于橢圓的長軸與短軸之間相差極小,所以建模時以圓形代替。</p><p><b>  活塞的建模思路</b>&

82、lt;/p><p> ?。?)為了快速準確地創(chuàng)建活塞模型,先抽取活塞模型中的對稱部分,由列表曲線創(chuàng)建活塞的1/4輪廓。</p><p> ?。?)鏡像生成活塞的整個輪廓。</p><p>  (3)創(chuàng)建活塞的頂部凹槽特征。</p><p> ?。?)創(chuàng)建活塞頭部的氣環(huán)槽和油環(huán)槽。</p><p>  (5)創(chuàng)建各部分的倒圓

83、角。</p><p><b>  活塞的建模步驟</b></p><p>  1、創(chuàng)建活塞1/4輪廓</p><p>  運用【拉伸工具】,創(chuàng)建如圖4.1所示的活塞4/1輪廓。</p><p>  圖4.1 創(chuàng)建活塞4/1輪廓</p><p><b>  2、創(chuàng)建活塞銷孔</b&g

84、t;</p><p> ?。?)運用【拉伸工具】創(chuàng)建銷座模型并拉伸出通孔,結果如圖4.2所示。</p><p>  圖4.2 創(chuàng)建活塞銷孔</p><p><b>  3、創(chuàng)建凸臺</b></p><p> ?。?)新建基準平面,并設置間距。</p><p>  (2)選取草繪平面,運用【拉伸工具

85、】,拉伸方式為【至曲面】,生成凸臺。</p><p> ?。?)運用【旋轉工具】,選擇【去除材料】,創(chuàng)建裙部凹面特征。</p><p>  (4)對生成的活塞銷孔邊和凸臺邊分別進行倒圓角。</p><p> ?。?)運用【孔工具】,創(chuàng)建【標準孔】,選擇螺紋類型為“M61”生成圖4.3。</p><p><b>  圖4.3 創(chuàng)建凸臺

86、</b></p><p>  4、鏡像生成整個活塞</p><p> ?。?)選取整個模型,鏡像生成整個活塞</p><p> ?。?)運用【旋轉工具】,【去除材料】,旋轉角度為“360”,創(chuàng)建旋轉剪切特征。</p><p>  (2)選擇【陣列工具】,對上一步創(chuàng)建的特征進行再生,生成一些活塞環(huán)槽護圈。</p>&l

87、t;p>  (3)運用【旋轉工具】,【去除材料】,創(chuàng)建氣環(huán)槽和油環(huán)槽。結果如圖4.4所示: </p><p>  圖4.4 鏡像生成整個活塞及建立活塞環(huán)槽</p><p><b>  5、創(chuàng)建頂部凹槽</b></p><p>  運用【拉伸工具】,拉伸方式為【盲孔】,選擇【去除材料】,生成頂部凹槽。</p><p>

88、;  圖5.4 創(chuàng)建頂部凹槽及活塞環(huán)</p><p><b>  結束語</b></p><p>  本文以柴油機作為參照,確定了相關參數(shù),以便進行下一步的設計計算。以傳統(tǒng)運動學和動力學的理論知識為依據(jù),對曲柄連桿機構的受力進行了系統(tǒng)的分析,并以此作為零件強度、剛度和和磨損等問題的依據(jù)。在此基礎上,又進行了動力學方面的理論分析,重點分析了活塞的運動規(guī)律。對曲柄連桿機構

89、的主要零部件之一的活塞進行了主要結構參數(shù)的設計計算,并通過校核檢驗尺寸選取的是否合適。分析了零部件的工作條件,總結應滿足的設計要求,合理選擇材料,以滿足強度和剛度的校核。應用三維CAD軟件Pro/ENGINEER建立了活塞模型,當模型建立完成后,運用Pro/E軟件完成與曲柄連桿機構的裝配。設定曲軸的轉速n rad/s,仿真時間為 t秒,開始仿真。</p><p><b>  參考文獻</b>

90、</p><p>  [1]黃圣杰.Proe/E Wildfire3.0基礎入門與工程應用.北京:機械工業(yè)出版社,2007.7.</p><p>  [2]關文達.汽車構造第2版.北京:機械工業(yè)出版社,2005.6.</p><p>  [3]濮良貴,紀名剛.機械設計.高等教育出版社.2006.5.</p><p>  [4]王春燕,陸鳳儀.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論