版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 2900單詞,14800英文字符,4740漢字</p><p> 出處:Kai M T. On Fuzzy Inference System Based Failure Mode and Effect Analysis (FMEA) Methodology[C]// Soft Computing and Pattern Recognition, International Conferen
2、ce of. IEEE, 2009:329-334.</p><p> 附錄A 外文翻譯原文</p><p> On Fuzzy inference system based</p><p> Failure Mode and Effect Analysis (FMEA) methodology</p><p> Kai Meng
3、Tay</p><p> Electronic Engineering Department, Faculty of Engineering,</p><p> University Malaysia Sarawak</p><p> Sarawak, Malaysia</p><p> kmtay@feng.unimas.my<
4、;/p><p> Abstract-Filure Mode and Effect Analysis (FMEA) is a popular problem prevention methodology. It utilizes a Risk Priority Number (RPN) model to evaluate the risk associated to each failure mode. The co
5、nventional RPN model is simple, but, its accuracy is argued. A fuzzy RPN model is proposed as an alternative to the conventional RPN. The fuzzy RPN model allows the relation between the RPN score and Severity, Occurrence
6、 and Detect ratings to be of non-linear relationship, and it maybe a more realis</p><p> Keywords: Fuzzy inference system, monotonicity property, sufficient conditions, FMEA, manufacturing</p><p&
7、gt; Ⅰ NTRODUCTION</p><p> Failure Mode and Effect Analysis (FMEA) is an effective problem prevention methodology that can easily interface with many engineering and reliability methods [1]. It can be descr
8、ibed as a systemized group of activities intended to recognize and to evaluate the potential failures of a product/process and its effects [2]. Besides, FMEA identifes actions which can eliminate or reduce the chances of
9、 potential failures from recurring. It also helps users to identify the key design or process charact</p><p> Conventional FMEA use a Risk Priority Number (RPN) to evaluate the risk associated to each failu
10、re mode. A RPN is a product of the risk factors, i.e., Severity (S), Occurrence (O) and Detect (D). FMEA assumes that multiple failure modes exist, and each failure mode has a different risk level that have to be evaluat
11、ed, and ranked. In general, S, O and D are of integer 1 to 10, usually defined in scale tables. </p><p> From literature, the use of Fuzzy Inference System (FIS) in FMEA is not new. Bowles and Pelez suggest
12、 to replace the conventional RPN model with a FIS (fuzzy RPN model) [3]. The fuzzy RPN model allows the relationship between the RPN score and the three risk factors (S, O, and D) to be of a non-linear relationship, whic
13、h is too complicated to be modeled by the simple conventional RPN model. Motivation of FIS to be chosen in this problem domain can explained with FIS ability to incorporate human/</p><p> The fuzzy RPN mode
14、l is a popular method, and has been successfully applied to a number of FMEA problems. For example, it was applied to FMEA of an auxiliary feed water system and a chemical volume control system in a nuclear power plant [
15、6, 7]. It was also used in FMEA of an engine system [8], a semiconductor manufacturing line [9], and a fishing vessel [10]. Over the years, several enhancements have also been proposed to the fuzzy RPN model. Development
16、 of a fuzzy RPN model using the grey relat</p><p> However, little attention is paid on the validity and the efficiency of the estimated RPN scores, as available in the literature. Therefore, in this paper,
17、 the efficiency of the fuzzy RPN model, in order to allow valid and meaningful comparisons among different failure modes in FMEA to be made is investigated. The fuzzy RPN model is viewed as an assessment or measurement m
18、odel, which is subjected to some theoretical properties of a length function, e.g. monotonicity, sub-additivity and etc [11].</p><p> Investigation in this paper focuses on monotonicity property of the fuzz
19、y RPN model. The fuzzy RPN model is firstly presented. Monotonicity property in FIS and a sufficient condition for a FIS to be monotone is also reviewed. Monotonicity property for the fuzzy RPN model is further defined.
20、 In this piece of work, the sufficient conditions for a FIS to be monotone, as pointed in various sources [12, 13, 14, 15], is applied to the fuzzy RPN model. The sufficient conditions pointed out that for a </p>
21、<p> This paper is organized as follow. In section II, the fuzzy RPN model is reviewed. In section III, the sufficient condition for a FIS to be monotone is presented.In section IV, the applicability of the suffi
22、cient condition to the fuzzy RPN model is discussed.Section V reports case studies with data/information collected from a FCBGA plant. Concluding remarks is then presented. </p><p> II REVIEW ON THE FUZZY
23、 RPN MODEL</p><p> Conventional RPN model is used to evaluate the risk associated with each failure mode in FMEA.Generally,the conventional RPN model takes three factors, i.e., S, O, and the RPN scores is d
24、etermined by the multiplication of these three inputs scores, as shown in (1). </p><p><b> (1)</b></p><p> In general, these three factors are estimated by experts in accordance wi
25、th a scale from”1”to“10”based on commonly agreed evaluation criteria.Tables 1, 2, and 3 summarize the evaluation criteria for S, O and D ratings,respectively,which is used practically in a semiconductor manufacturing pla
26、nt.</p><p> TABLEⅠ. SCALE TABLE FOR SEVERITY</p><p> TABLEⅡ. SCALE TABLE FOR OCCURANCE</p><p> TABLE Ⅲ. SCALE TABLE FOR DETECT</p><p> Even through the tradition
27、al RPN model is simple and has been well accepted for safety analysis, it suffers from several weaknesses. In [3], it is pointed out that the same RPN score can be obtained from a number of different score combinations o
28、f S, O, and D. Although the same RPN is obtained, the risk can be different. Besides, is it argued that the relative importance of S, O and D maybe different.The fuzzy RPN model is proposed in [3], as a solution to these
29、 problems. In the fuzzy RPN, a FIS</p><p> Membership functions of S, O, and D can be generated based on the criteria in Tables 1, 2 and 3 respectively. Figures 1, 2, and 3 depict the fuzzy membership funct
30、ion for, O()and D(), respectively. As an example, referring to Fig. 1, the second membership function of S, with linguistic label of “Law” represents S ratings from 2 to 5, which correspond to “yield hit,cosmetic,impact,
31、special internal handling, effort or annoyance”as in Table1.The same scenario applies to Fig.2,where the “Moderate”me</p><p> Output of the fuzzy RPN model, RPN score is varies from 1 to 1000.In this case s
32、tudy, it is divided into five equal partitions, with fuzzy membership functions, B,“Low”, “Low Medium”,“Medium”,“High Medium” and “High”,respectively. The corresponding b scores are assumed to the point where membership
33、value of B is 1.Hence b,is 1,250.75,500.25, and 1000, respectively.</p><p> A fuzzy rule base is a collection of knowledge from experts in the If-Then format. Considering S, O, and D, and their linguistic t
34、erms, the fuzzy rule base has 180(5(S) ×6(O)×6(D)) rules in total using the grid partition approach [4,5]. As an example, Fig.4 show two rules that describe a small portion of the fuzzy rules collected from waf
35、er mounting process engineers.</p><p> In this paper, a simplified Mamdani FIS [3, 4] is used to evaluate the RPN, as in (2). (2) can be viewed as zero order Sugeno FIS model. </p><p><b>
36、 (2)</b></p><p> ?、?REVIEW ON THE SUFFIENT CONDITIONS OF A FIS TO BE OF MONOTONICITY</p><p> If for all and such that <, then for a function f to be monotonically increasing or decre
37、asing, the condition ormust be fulfilled, respectively.</p><p> From the literature review, there are a lot of investigations on the monotonicity property of FIS models.Developments of FIS models that fulfi
38、l the monotone constraint are also available.Zhao and Zhu examined the condition for an FIS to be monotone, and analyzed the FIS operations step by step [12]. Their findings revealed that as long as the rule base is mono
39、tone,a single-input Mamdani fuzzy model can be monotone, and a two-input Mamdani fuzzy model can be roughly monotone. </p><p> Another attempt to study the monotone property is to differentiate the output
40、of an FIS with respect to its input(s). Won [13] derived the sufficient conditions for the first order Sugeno fuzzy model with this approach. From [14,15,16],the sufficient conditions for a zero order Sugeno FIS to be mo
41、notone is reported.</p><p> For a FIS to be monotone, the sufficient conditions stated that two conditions are needed. Condition(1) can be viewed as a method how membership function should be tuned in orde
42、r to ensure a FIS to be of monotonicity property. Assume both and are differentiate-able. For <, condition as in (3) has to be fulfilled.</p><p><b> (3)</b></p><p> Condition (
43、2) highlights the important of having a monotonic rule base in the FIS model. These two conditions are very useful, as it can be directly applied to various FIS related techniques.It was later combined with least squar
44、e learning [17], and evolutionary computation-based learning [18]. These conditions are further extended to a multiple stage FIS [15]. </p><p> IV APPLICATION OF THE MONOTONICITY PROPERTY AND THE SUFFICIEN
45、T CONDITIONS TO THE FUZZY RPN MODEL</p><p> In this paper, it is proposed that the fuzzy RPN model is of monotonicity property [19]. Similar to the traditional RPN function, S, O, and D of the fuzzy RPN a
46、re defined in such a way that the higher the input scores, the more critical the situation. The output RPN is a measure of the failure risk. </p><p><b> Yes</b></p><p> Correction
47、required</p><p> Figure The proposed fuzzy RPN model and procedure</p><p> For example, for two failures with input sets of 5 5 6 and 5 5 7 (S, O, and D), the fuzzy RPN for the second failure
48、 should be higher than that of the first.This can be explained with referring Tables 1, 2 and 3.These two failures are of the same S and O scores, but with D score of 6 and 7 respectively.Failure with D score of 6 (“Cont
49、rols are able to Detect within the same functional area”) represents a better control mechanism than that of D score of 7 (“Controls may not Detect excursion until </p><p> The monotonicity property in this
50、 paper suggests that if any of the two scores are static, to allow valid comparison, as the third score increases, the RPN score should not decrease. </p><p> To fulfill the monotonicity property, the suffi
51、cient conditions is used in the fuzzy RPN model. Fig.5 depicts the flow chart for the author’s proposed fuzzy RPN model. Condition (1) can be used as a criterion to tune membership function.Membership functions for S, O
52、, and D are tuned with accordance to Condition (1).Figures 1, 2 and 3 illustrate the membership function for S,O and D respectively,which fulfill Condition (1).</p><p> Condition (2) can be viewed as criter
53、ia for a set of valid rule base.From Fig.5, Condition (2) can be used to check the validity of the collected rule base.</p><p> ?、?CASE STUDY AND EXPERIMENTAL RESULTS</p><p> To validate the
54、proposed approach, experiments with data/information collected from a semiconductor manufacturing processes of Flip Chip Ball Grid Array (FCBGA) products is conducted.FCBGA is a low cost semiconductor packaging solutio
55、n which utilizes the Controlled Collapse Chip Connect technology, or which is known as Flip Chip (FC) for its die to substrate interconnection.FC was initiated at the early 1960s to eliminate the expanse, unreliability,
56、and low productivity of manual wire bonding</p><p> Tables 4 and 5 summarize the failure risk evaluation, ranking, and prioritization results using the traditional and fuzzy RPN models for the wafer mountin
57、g and underfill dispensing process. Columns “Sev”(Severity), “Occ” (Occurrence), and “Det”(Detect) show the three ratings that describes each failure.Failure risk evaluation and prioritization outcomes based on the tradi
58、tional RPN model are shown in columns “RPN” and “RPN rank”respectively. </p><p> Column “Fuzzy RPN (FPR)”shows the failures risk evaluation results using the fuzzy RPN model, while sub-columns “FRPN” and “F
59、RPN Rank” show its failure risk evaluation and prioritization outcomes, respectively. Column “Expert’s Knowledge (FPR)” shows the linguistic term assigned by process engineers. </p><p> For example, in Tab
60、le 4, failure mode “1” represents “broken wafer” which leads to yield loss, and is given a S score of 3 (refer to Table 1). This failure happens because of “drawing out arm failure”, and because it rarely happens,it is a
61、ssigned an O score of 1 (refer to Table 2). In order to eliminate the cause, software enhancement has been done as action taken. Owing to the action taken is very effective, and can almost eliminate the root cause; a D s
62、core of 1 is given (refer to Table 3).Usi</p><p> The monotonicity property is important to allow a valid comparison among 2 failures mode, for example failure mode “1” and “3” in Table 4. Failure model “3”
63、is of S, O, and D of 3, 2, and 1 respectively. Monotonicity property suggests that failure mode “3” should have a higher fuzzy RPN score (fuzzy RPN=19) than that of “1” to allow valid comparison. </p><p> T
64、he same scenario can be observed in Table 5, a case study on underfill dispensing process. To allow valid comparison among failures mode “1”, “2” and “3”, fuzzy RPN score for “3” should not be lower than “2” and fuzzy RP
65、N score of “2”should be lower than”1”. With the use of the sufficient condition, Fuzzy RPN score of 1, 1 and 2 is assigned to failure mode “1” “2” and “3”respectively. </p><p> From the observation, the fu
66、zzy RPN model is able to fulfill the monotonicity property for all failures. There are no illogical predictions found in both case studies. As summary, as long as Condition (1) and Condition (2) are fulfilled, the mono
67、tonicity property can be ensured. </p><p> ?、?SUMMARY</p><p> In this paper, it is argued that the fuzzy RPN model should be subjected to some theoretical properties of a length function.This
68、is important, as it will ensure the validity of the RPN score, in order to allow comparisons among different failure modes in FMEA. This paper provides a simple and easy approach to construct the fuzzy RPN model in prac
69、tice from FMEA users.It is suggested that the sufficient conditions for a fuzzy inference system to be of monotonicity to be applied to the fuzzy RPN </p><p> Experiments have been conducted to evaluate the
70、 proposed approach.Experiment is conducted with data and information from one of the manufacturing processes in a FCBGA manufacturing plant, i.e., wafer mounting and underfill dispensing processes. These experiments give
71、 promising results.</p><p> Investigation of a fuzzy inference system based assessment model (fuzzy RPN in particular) to fulfill other properties of a length [11], i.e. sub-additivity can be a good researc
72、h topic. </p><p> REFERENCES</p><p> [1] W. Grant Ireson, Clyde F. Coombs, JR and R. Y. Moss. Handbook </p><p> Reliability Engineering and Management. McGraw-Hill Professional
73、; 2nd edition, 1995. </p><p> [2] Chrysler Corporation, Ford Motor Company and General Motors </p><p> Corporation (SAE J 1739). Potential Failure Mode And Effect analysis (FMEA) Reference
74、Manual, 1995. </p><p> [3] J.B. Bowles, and C.E. Pelez, fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis Reliability Engineering and System Safety, vol. 50,
75、1995, pp. 203~213.</p><p> [4] J.S.R. Jang and C.T. Sun & E. Mizutani. Neural-Fuzzy and soft Computing. Prentice-Hall, 1997. </p><p> [5] C.T. Lin and C.S.G.Lee. Neural Fuzzy Systems: A N
76、euro-Fuzzy Synergism to Intelligent systems, 1996. </p><p> [6] A.C.F.Guimars, and C.M.F. Lapa,Effects analysis fuzzy inference system in nuclear problems using approximate reasoning?, Annals of nuclear Ene
77、rgy, vol. 31, 2004, pp. 107~115. </p><p> [7] A.C.F. Guimars, and C.M.F. Lapa, Fuzzy FMEA applied to PWR chemical and volume control system Progress in Nuclear Energy, vol. 44, 2004, pp. 191~213. </p>
78、<p> [8] K. Xu, L.C. Tang, M. Xie, S. L. Ho and M.L. Zhu., Fuzzy assessment of FMEA for engine systems? Reliability Engineering and System Safety, vol. 75, pp. 17~19, 2002. </p><p> [9] K
79、.M. Tay, and C.P. Lim, Fuzzy FMEA with Guided Rules Reduction System for Prioritization of Failures? International Journal of Quality Reliability Management, vol. 23, 2006, pp. 1047~1066. </p><p> [10]
80、A. Pillay, and J. Wang, Modified failure mode and effects analysis using approximate reasoning, Reliability Engineering & System Safety, vol. 79, 2003, pp. 69~85. </p><p> [11] Inder K Rana, An introdu
81、ction to Measure and integration, Alpha Science international, 2005 </p><p> [12] H.Zhao and C.Zhu, Monotone fuzzy control method and its control performance, IEEE International Conference on Systems, Man,
82、and Cybernetics, 2000 vol. 5, 2000, pp. 3740-3745. </p><p> [13] J.M. Won, S.Y. Park, and J.S. Lee, Parameter conditions formonotonic Takagi-Sugeno-Kang fuzzy system, Fuzzy Sets and Systems, vol.132, 2002,
83、pp. 135~146. </p><p> [14] K.M. Tay, and C.P. Lim, On the Use of Fuzzy Inference Techniques in Assessment Models: Part I: Theoretical Properties, Fuzzy Optimization and Decision Making, vol. 7 , Issue.3, 20
84、08, pp. 269~281. </p><p> [15] K.M. Tay, and C.P. Lim, On the Use of Fuzzy Inference Techniques in Assessment Models: Part II: Industrial Applications, Fuzzy Optimization and Decision Making, vol. 7 , Issu
85、e.3, 2008, pp. 283.~302. </p><p> [16] V.S. Kouikoglou and Y. A. Phillis, On the monotonicity of hierarchical sum-product fuzzy systems, Fuzzy sets and systems,2009. doi:10.1016/j.fss.2009.02.001. </p>
86、;<p> [17] K. Koo; J.M. Won, J.S. Lee, Least squares identification of monotonic fuzzy systems, Fuzzy Information, 2004. Processing NAFIPS opos 2004. IEEE Annual Meeting of the vol. 2, Issue , 27~30, 2004, pp. 7
87、45 ¨C 749.</p><p> 附錄B 外文文獻(xiàn)譯文</p><p> 基于模糊推理系統(tǒng)的失效模式與效應(yīng)分析(FMEA)</p><p> 馬來西亞沙撈越大學(xué)工程學(xué)院電子工程系</p><p> KAI MENG TAY</p><p><b> 馬來西亞沙撈越</b>
88、;</p><p> kmtay@feng.unimas.my</p><p> 摘要:失效模式與效應(yīng)分析是一種通用的解決問題的方法。它利用風(fēng)險(xiǎn)優(yōu)先數(shù)(RPN)模型來評(píng)估每個(gè)失效模式相關(guān)的風(fēng)險(xiǎn)。傳統(tǒng)的RPN很簡(jiǎn)單但是準(zhǔn)確性不夠。所以提出用一個(gè)模糊的RPN模式來替代傳統(tǒng)RPN模式。模糊的RPN模型允許RPN值和嚴(yán)重度,發(fā)生率,檢測(cè)評(píng)級(jí)之間的關(guān)系是非線性關(guān)系,它或許是更切合實(shí)際的表達(dá)形式。
89、本文中,為了對(duì)模糊的RPN模型的效率進(jìn)行研究,允許在FMEA的不同故障模式之間進(jìn)行有效的和有意義的比較。本文建議,模糊理論應(yīng)受到RPN長(zhǎng)度函數(shù)如單調(diào)性,子可加等些許屬性的制約。在本文中介紹重點(diǎn)是單調(diào)性。首先定義模糊RPN的單調(diào)性,F(xiàn)IS具有單調(diào)性的充分條件應(yīng)用于模糊的RPN模型。這是一個(gè)在實(shí)踐中構(gòu)建模糊RPN方便,可靠的指導(dǎo)。本文將會(huì)在半導(dǎo)體制造過程中構(gòu)建模糊RPN模型。</p><p> 關(guān)鍵字:模糊推理系統(tǒng)
90、(FIS),單調(diào)性屬性,充分條件,F(xiàn)MEA,制造</p><p><b> 1 簡(jiǎn)介</b></p><p> 失效模式與效應(yīng)分析方法(FMEA)是一種有效以及可靠的預(yù)防故障發(fā)生的方法,它可以方便應(yīng)用于許多工程問題。這種方法可以描述為一個(gè)系統(tǒng)化活動(dòng)目的組旨在識(shí)別并評(píng)估產(chǎn)品/過程中潛在的故障和它的影響。此外,F(xiàn)MEA標(biāo)識(shí)可以消除或減少再次出現(xiàn)的潛在故障的可能性的機(jī)會(huì)
91、。它還可以幫助用戶確定關(guān)鍵設(shè)計(jì)或要求特殊控制的制造工藝,并突出特性控制或性能的改進(jìn)的部位。</p><p> 傳統(tǒng)FMEA使用風(fēng)險(xiǎn)優(yōu)先數(shù)(RPN)來評(píng)估每個(gè)故障模式相關(guān)的風(fēng)險(xiǎn)。RPN是一種產(chǎn)品的風(fēng)險(xiǎn)因素即嚴(yán)重度(S)發(fā)生率(O)和檢測(cè)度(D),F(xiàn)MEA假定多個(gè)故障模式存在,并且每個(gè)故障模式具有不同的風(fēng)險(xiǎn)級(jí)別那么必須對(duì)風(fēng)險(xiǎn)進(jìn)行評(píng)估和排名。一般來說,S、O和D等級(jí)評(píng)分為1-10,通常在分?jǐn)偙阮~表中定義。</p
92、><p> 從文獻(xiàn)中得知,在FMEA中使用模糊推理系統(tǒng)并不是新穎的。Bowles and Pelaze建議用FIS(模糊RPN模型)取代傳統(tǒng)的RPN模型,模糊RPN模型允許RPN分?jǐn)?shù)和三個(gè)風(fēng)險(xiǎn)因素(S、O、D)之間的關(guān)系是非線性的。實(shí)際問題由于過于復(fù)雜,難以用傳統(tǒng)的RPN模型建模。在此問題中FIS的選擇動(dòng)機(jī)可以用FIS納入人權(quán)/專家知識(shí)的能力解釋,在FIS中信息由含糊不清和不精確的語(yǔ)言描述。多年來FIS在各種應(yīng)用領(lǐng)
93、域例如控制,建模,分類問題中表現(xiàn)出了它的優(yōu)點(diǎn)。</p><p> 模糊的RPN模型是一種通用的解決問題的方法,而且一直成功的應(yīng)用于大量FMEA問題。例如,它應(yīng)用于一個(gè)輔助反饋水系統(tǒng)的FMEA和中核化學(xué)控制系統(tǒng)[6,7]。他也被用在引擎系統(tǒng)的FMEA,如半導(dǎo)體制造線和漁船系統(tǒng)。多年來提出了模糊RPN模型的幾項(xiàng)增強(qiáng)功能。文獻(xiàn)[10]中提出了使用灰色關(guān)聯(lián)理論的模糊RPN模型的發(fā)展。文獻(xiàn)[8]提出模糊RPN模型所有故障
94、之間的相互依懶性。文獻(xiàn)[9]中提出了減少模糊RPN模型中的模糊規(guī)則數(shù)量的辦法。</p><p> 然而,在可用的文獻(xiàn)中很少關(guān)注RPN估值的有效性和效率。因此本文中,為了對(duì)模糊的RPN模型的效率進(jìn)行研究,允許在FMEA的不同故障模式之間進(jìn)行有效的和有意義的比較。模糊的RPN模型被認(rèn)為是評(píng)估或測(cè)量模型,這是由于長(zhǎng)度函數(shù)的一些理論屬性例如單調(diào)性,子可加等的影響。</p><p> 本文中重點(diǎn)
95、介紹的是模糊RPN模型屬性中的單調(diào)性。首先介紹模糊RPN模型。FIS的單調(diào)性和FIS是單調(diào)的充分條件也是需要檢驗(yàn)的。進(jìn)一步定義模糊RPN模型的單調(diào)性,在本文中FIS是單調(diào)的充分條件應(yīng)用于模糊RPN模型。充分條件指出一個(gè)FIS是單調(diào)的需要兩個(gè)數(shù)學(xué)條件。條件(1)可以被看做一種方法,如何調(diào)整隸屬函數(shù)以確保模糊RPN模型的單調(diào)性屬性,條件(2)突出了模糊模型中具有單調(diào)規(guī)則庫(kù)的重要性。這可以被看做是一個(gè)簡(jiǎn)單的準(zhǔn)則關(guān)于如何在。實(shí)踐中構(gòu)建模糊RPN
96、。為了更進(jìn)一步評(píng)估提出的方法,做了從半導(dǎo)體反轉(zhuǎn)芯片球柵格陣列(FCBGA)制作過程中收集數(shù)據(jù)的實(shí)驗(yàn)。</p><p> 本文的結(jié)構(gòu)如下,第二節(jié)對(duì)模糊RPN模型進(jìn)行檢驗(yàn)。第三節(jié)提出了FIS單調(diào)的充分條件。第四節(jié)對(duì)模糊RPN模型的充分條件的適應(yīng)性進(jìn)行了討論。第五節(jié)有關(guān)案列從FCBGA制作過程手機(jī)數(shù)據(jù)/信息。最后提出結(jié)論性意見。</p><p> 2 模糊RPN模型檢驗(yàn)</p>
97、<p> 傳統(tǒng)RPN模型被用來評(píng)估與FMEA每個(gè)故障模型相關(guān)的風(fēng)險(xiǎn),一般情況下,傳統(tǒng)RPN模型需要三個(gè)因素即S、O和D。RPN值是三個(gè)輸入值相乘決定,如式(1)中所示。</p><p><b> (1)</b></p><p> 一般情況下,這三個(gè)因素由專家估計(jì)并按照規(guī)模從1-10共同制定評(píng)價(jià)標(biāo)準(zhǔn)表。表1、2、3分別總結(jié)了S、O、D的評(píng)價(jià)標(biāo)準(zhǔn),這被應(yīng)
98、用到實(shí)際的半導(dǎo)體制作工廠。</p><p> 表1 嚴(yán)重度的評(píng)價(jià)標(biāo)準(zhǔn)表</p><p> 表2 發(fā)生率的評(píng)價(jià)標(biāo)準(zhǔn)表</p><p> 表3 可探測(cè)度評(píng)價(jià)標(biāo)準(zhǔn)表</p><p> 即使傳統(tǒng)RPN模型是簡(jiǎn)單模型而且被用作安全性分析,但它有幾個(gè)弱點(diǎn)。3中指出相同的RPN風(fēng)險(xiǎn)系數(shù)可以由不同的S、O、D數(shù)的組合得到。雖然可以獲得同一RPN
99、值,但是其風(fēng)險(xiǎn)可以是不同的。此外S、O、D允許有不同的相對(duì)重要性。提出用模糊RPN模型作為一中解決方案來解決上述提到的問題。在模糊的RPN模型中,使用FIS模型進(jìn)行代替?zhèn)鹘y(tǒng)RPN模型。它假設(shè)RPN值和輸入之間的分?jǐn)?shù)即S、O、D是非線性關(guān)系。</p><p> 分別按表1,2和3的標(biāo)準(zhǔn)可以生成S、O和D的隸屬函數(shù)。圖形1,2和3分別描述的是模糊隸屬函數(shù)S(),O()和D()。舉個(gè)例子,圖1所指,S函數(shù)的第二個(gè)曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2009年--電氣工程及其自動(dòng)化外文翻譯---基于模糊推理系統(tǒng)的失效模式與效應(yīng)分析(fmea)
- 2009年--電氣工程及其自動(dòng)化外文翻譯---基于模糊推理系統(tǒng)的失效模式與效應(yīng)分析(fmea)
- 2009年--電氣工程及其自動(dòng)化外文翻譯---基于模糊推理系統(tǒng)的失效模式與效應(yīng)分析(FMEA).docx
- 2009年--電氣工程及其自動(dòng)化外文翻譯---基于模糊推理系統(tǒng)的失效模式與效應(yīng)分析(fmea)(英文)
- 2009年--電氣工程及其自動(dòng)化外文翻譯---基于模糊推理系統(tǒng)的失效模式與效應(yīng)分析(FMEA).docx
- 2009年--電氣工程及其自動(dòng)化外文翻譯---基于模糊推理系統(tǒng)的失效模式與效應(yīng)分析(FMEA)(英文).pdf
- 2009年--電氣工程及其自動(dòng)化外文翻譯---基于模糊推理系統(tǒng)的失效模式與效應(yīng)分析(FMEA)(英文).pdf
- [雙語(yǔ)翻譯]--電氣工程及其自動(dòng)化外文翻譯---基于模糊推理系統(tǒng)的失效模式與效應(yīng)分析(fmea)
- 電氣工程及其自動(dòng)化外文資料翻譯
- fmea失效模式與效應(yīng)分析
- 失效模式與效應(yīng)分析程序fmea
- 電氣自動(dòng)化外文翻譯
- 電氣自動(dòng)化外文及翻譯
- 關(guān)于電氣工程及其自動(dòng)化電力方面的外文翻譯
- 電氣工程及其自動(dòng)化
- 2006年---電氣工程與自動(dòng)化外文翻譯--在建筑環(huán)境中提供適應(yīng)用戶的控制策略
- 分析電氣工程及其自動(dòng)化的建設(shè)與發(fā)展
- [雙語(yǔ)翻譯]---電氣工程與自動(dòng)化外文翻譯--在建筑環(huán)境中提供適應(yīng)用戶的控制策略
- [雙語(yǔ)翻譯]--電氣工程與自動(dòng)化外文翻譯--在建筑環(huán)境中提供適應(yīng)用戶的控制策略
- 電氣工程及其自動(dòng)化專業(yè)畢業(yè)設(shè)計(jì)外文翻譯模版
評(píng)論
0/150
提交評(píng)論