遙感圖像處理_第1頁
已閱讀1頁,還剩97頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、1,第4章 圖像分割,多媒體信息處理,2,主要內(nèi)容,圖像分割圖像分割引言間斷檢測邊緣連接和邊界檢測門限處理基于區(qū)域的分割,3,圖像分割引言,計算機處理圖像的兩個目的產(chǎn)生更適合人觀察和識別的圖像由計算機自動識別和理解圖像圖像分割是圖像識別和圖像理解的基礎(chǔ),圖像分析系統(tǒng)的基本構(gòu)成如下圖:,在該系統(tǒng)中,圖像的增強和恢復(fù)可以看作預(yù)處理,其輸入、輸出均是圖像,它是傳統(tǒng)的圖像處理的內(nèi)容。而圖像分割、特征提取及結(jié)構(gòu)分析等稱為圖像識別,

2、其輸入是圖像,輸出是描述或解釋。,圖像分割引言,5,圖像分割引言,圖像分割的定義圖像分割是把圖像分割成互不交疊的有意義區(qū)域,以便進一步的分析,分開的區(qū)域一般是圖像中我們感興趣的目標圖像分割是基于目標或區(qū)域的特征進行的每個目標或區(qū)域由于某些特征的不同與其它區(qū)域區(qū)別開來,邊緣、紋理、形狀、顏色等都是重要的特征,6,圖像分割引言,圖像分割算法一般是基于亮度值的不連續(xù)性和相似性不連續(xù)性是基于亮度的不連續(xù)變化分割圖像,稱為基于邊界的技術(shù),

3、如邊緣檢測相似性是指根據(jù)不同的準則將圖像分割成相似的區(qū)域,稱為基于區(qū)域的技術(shù),如閾值分割、區(qū)域生長、區(qū)域分裂和合并,圖像分割的目的把圖像分解成構(gòu)成它的部件和對象;有選擇性地定位感興趣對象在圖像中的位置和范圍。,從簡到難,逐級分割控制背景環(huán)境,降低分割難度注意力集中在感興趣的對象,縮小不相干圖像成分的干擾。,圖像分割的基本思路,提取輪廓,車牌定位,車牌識別,,,圖像分割的基本策略:,把像素按灰度劃分到各個物體對應(yīng)的 區(qū)

4、域中去;,確定存在于區(qū)域間的邊界;,先確定邊緣像素點,然后將它們連接起來 構(gòu)成所需的邊界;,4.圖像分割的方法1) 基于邊緣的分割方法:先提取區(qū)域邊界,再確定邊界限定的區(qū)域。2) 區(qū)域分割:確定每個像素的歸屬區(qū)域,從而形成一個區(qū)域圖。3) 區(qū)域生長:將屬性接近的連通像素聚集成區(qū)域。4) 分裂-合并分割:綜合利用前兩種方法,既存在圖像的劃分,又有圖像的合并。,11,圖像分割引言,12,間斷檢測,間斷檢測是基于圖像像素灰度值

5、的不連續(xù)性進行圖像分割點檢測線檢測邊界檢測尋找間斷最一般的方法是模板檢測,13,間斷檢測,點檢測使用空域高通濾波器來檢測孤立點,如果 ,則認為在模板中心的位置檢測到一個點,T是非負門限孤立點:該點的灰度級與其背景的差異相當大,并且它所在的位置是一個均勻的或者近似均勻的區(qū)域基本思想:如果一個孤立點與它周圍的點很不相同,則很容易被上述模板檢測到。在灰度級為常數(shù)的區(qū)域,模板響應(yīng)R為0,14,間斷檢測,點檢測R=(-1*

6、10*8+8*100)/9=720/9=80可以設(shè)置閾值T = 50若R=0,則說明檢測點與周圍點像素值相同若R > T,則說明檢測點與周圍點像素值非常的不同,為孤立點,10,10,10,10,100,10,10,10,10,圖像,-1,-1,-1,-1,8,-1,-1,-1,-1,模板,15,間斷檢測,16,間斷檢測,線檢測第一個模板對水平方向的線條(單像素寬)有更強的響應(yīng)第二個模板對于45度方向線有最佳響應(yīng)

7、第三個模板對垂直線有最佳響應(yīng)第四個模板對于-45度線有最佳響應(yīng)每個模板系數(shù)相加總和為0,保證了在灰度級恒定的區(qū)域,模板響應(yīng)為0,17,間斷檢測,線檢測通過典型模板計算值的比較,確定一個點是否在某個方向的線上,以及當前圖像的線性特征用四種模板分別計算R1=24R2=0R3=0R4=0,18,間斷檢測,圖一為原圖像,圖二為使用負45度檢測器處理后的結(jié)果(取絕對值),圖三為滿足閾值條件的所有點,閾值條件為大于等于原圖像中的最大

8、值,19,間斷檢測,邊緣檢測邊緣是位于兩個區(qū)域的邊界線上的相連像素的集合邊緣可以通過計算局部微分算子來檢測一階導(dǎo)數(shù):通過梯度來計算二階導(dǎo)數(shù):通過拉普拉斯算子來計算,理想數(shù)字邊緣,該模型生成的圖像邊緣是一組相連的的象素集合(垂直方向上),每個象素都處在灰度躍變的一個垂直的臺階上。,間斷檢測,斜坡的斜率與邊緣的模糊程度成正比。,斜坡數(shù)字邊緣,間斷檢測,可用一階導(dǎo)數(shù)的幅度值來檢測邊緣的存在一階導(dǎo)數(shù)的幅度峰值對應(yīng)邊緣位置,二階導(dǎo)

9、數(shù)在一階導(dǎo)數(shù)的階躍上升區(qū)有一個向上的脈沖,而在一階導(dǎo)數(shù)的階躍下降區(qū)有一個向下的脈沖。這2個階躍之間的過零點正對應(yīng)原圖像中的邊緣位置。二階導(dǎo)數(shù)的過零點對應(yīng)邊緣位置,二階導(dǎo)數(shù)在過零點附近的符號確定邊緣象素在圖像邊緣的暗區(qū)或明區(qū),間斷檢測,23,間斷檢測,左圖第一列為原圖像及其灰度級第二列為一階導(dǎo)數(shù)的圖像顯示及其值第三列為二階導(dǎo)數(shù)的圖像顯示及其值,從上向下的四行分別是無噪聲、輕微噪聲、中等噪聲和嚴重噪聲的情況一階、二階導(dǎo)數(shù)對噪聲比較

10、敏感,因此圖像受到噪聲的干擾時,通過求導(dǎo)數(shù)不能準確的檢測邊緣,間斷檢測,上圖中第1列的圖像分割顯示了分割左右黑白區(qū)域的4個斜坡邊緣的特寫圖。左上角的圖像分割是無噪聲的. 第1列的其他3幅圖分別被附加的零均值且標準差偉0.1,1.0和10.0灰度級的高斯噪聲污染。每幅圖像下面顯示的圖是穿過圖像的水平掃描線的灰度級剖面線。第2列圖像是左邊圖像的一階導(dǎo)數(shù)圖像,在恒定的黑色和白色區(qū)域?qū)?shù)為零。這是在導(dǎo)數(shù)圖像中的兩個黑色區(qū)域。不變化的斜坡導(dǎo)數(shù)是

11、常量,大小等于斜坡的斜率。這個在導(dǎo)數(shù)圖像中不變的區(qū)域用灰色表示。當我們將中心列向下移時,導(dǎo)數(shù)變得與無噪聲情況時越來越不相同。這些例子很好地說明了導(dǎo)數(shù)對于噪聲的敏感性。第3列圖像顯示二階導(dǎo)數(shù)對于噪聲甚至更為敏感。二階導(dǎo)數(shù)圖像和剖面線清楚地說明了,實際檢測這些圖像中為正和為負的分量很困難,而這些分量是在邊緣檢測中非常有用的二階導(dǎo)數(shù)特性。,24,25,間斷檢測,邊緣檢測梯度算子函數(shù)f(x,y)在(x,y)處的梯度為一個向量:向量的大

12、?。航茷椋合蛄康姆较?邊緣在點(x,y)處的方向與此點的梯度向量方向垂直,26,間斷檢測,邊緣檢測Robert交叉梯度算子特點:與梯度算子檢測邊緣的方法類似,對噪聲敏感,但效果較梯度算子略好。,27,間斷檢測,邊緣檢測Prewitt算子特點:在檢測邊緣的同時,能抑止噪聲的影響.,28,間斷檢測,邊緣檢測Sobel算子特點:對4鄰域采用帶權(quán)方法計算差分;能進一步抑止噪聲;但檢測的邊緣較寬。,Sobel算子與Prewi

13、tt算子相比有較好的噪聲抑制功能,29,間斷檢測,邊緣檢測用于檢測對角線方向上突變的Prewitt和Sobel模板,30,間斷檢測,圖a原圖像,圖b為x方向梯度圖Gx,圖c為y方向梯度圖Gy ,圖d為完整梯度圖Gx+ Gy,間斷檢測,上圖說明了梯度的兩個分量|Gx|和|Gy|的響應(yīng)與這兩個分量之和生成的梯度圖像。(b)和(c)中兩個分量的方向性是很明顯的。特別注意, (b)中屋瓦,磚塊的水平接縫和窗戶的水平分段的圖像是非常清晰的.與之

14、形成對照的是 (c)中表現(xiàn)出的垂直部分,諸如墻附近的拐角,窗戶的垂直部分,磚塊的垂直接縫和圖片右側(cè)的街燈柱子。原圖分辨率相當高(1200×1600像素),且在圖片攝取的距離上,墻磚對圖像細節(jié)的影響仍十分顯著。這種程度的細節(jié)通常是不符合要求的。減少這種影響的一種方法是對圖像進行平滑處理。,31,32,間斷檢測,圖e經(jīng)過5X5均值濾波后的原圖像,圖f為x方向梯度圖Gx,圖g為y方向梯度圖Gy ,圖h為完整梯度圖Gx+ Gy,間斷

15、檢測,圖像e為對原圖像a使用了一個5×5的均值濾波器進行平滑處理后結(jié)果?,F(xiàn)在每個模板的相應(yīng)幾乎未顯示出由磚塊造成的影響,得到的結(jié)果幾乎都是主要的邊緣。注意取均值造成所有的邊緣相應(yīng)都被削弱。a-h中明顯顯示出,水平和垂直Sobel模板對正負450方向邊緣的反映幾乎一樣好。圖i和j顯示的是對角Sobel模板的絕對響應(yīng)。在這幅圖中,這些模板更強的對角響應(yīng)是很明顯的。兩個對角模板對水平和垂直的邊緣具有相似的相應(yīng),但正如所期望的那樣,

16、它們在這些方向上的響應(yīng)比圖 (b)和圖 (c)中顯示的Sobel模板在水平和垂直方向上的響應(yīng)要弱。,33,34,間斷檢測,圖i為使用用于檢測45度對角線方向上突變的Sobel模板的結(jié)果圖j為用于檢測負45度對角線方向上突變的Sobel模板,35,間斷檢測,邊緣檢測拉普拉斯算子圖像函數(shù)f(x,y)的拉普拉斯變換為,36,間斷檢測,邊緣檢測拉普拉斯算子一般不以其原始形式用于邊緣檢測的原因是拉普拉斯算子對噪聲非常敏感拉普拉斯算子的

17、幅值產(chǎn)生雙邊緣不能檢測邊緣的方向拉普拉斯算子在分割中的作用利用它的零交叉性質(zhì)進行邊緣定位確定一個像素在邊緣暗的一邊還是亮的一邊,37,間斷檢測,邊緣檢測高斯型拉普拉斯算子高斯函數(shù)的目的是對圖像進行平滑拉普拉斯算子的目的是提供一幅用零交叉確定邊緣位置的圖像圖像的平滑處理減少了噪聲的影響,38,間斷檢測,邊緣檢測Laplacian算子和平滑Gaussian濾波器進行結(jié)合來進行邊緣檢測,39,間斷檢測,LoG檢測結(jié)果,Sob

18、el算子檢測結(jié)果,LoG圖像閾值分割的結(jié)果,零交叉點,40,間斷檢測,邊緣檢測拉普拉斯算子和Sobel算子比較缺點邊緣由許多閉合環(huán)的零交叉點決定零交叉點的計算比較復(fù)雜優(yōu)點零交叉點圖像中的邊緣比梯度邊緣細抑制噪聲的能力和抗干擾能力比梯度算子強結(jié)論:梯度算子用的更多,41,間斷檢測,邊緣檢測邊緣檢測的Matlab函數(shù)BW = edge(I,'sobel')BW = edge(I,'prewit

19、t')BW = edge(I,'roberts')BW = edge(I,'log')BW = edge(I,‘zerocross’,thresh,h),間斷檢測,Canny算子1986 年,Canny 提出了邊緣檢測算子應(yīng)滿足以下3 個判斷準則:信噪比準則,定位精確度準則,單邊緣響應(yīng)準則,并推導(dǎo)出了Canny 算子。實現(xiàn)步驟有四個子過程:第一步首先用二維高斯函數(shù)的一階導(dǎo)數(shù)對圖像進行平

20、滑第二步用2×2 鄰域一階偏導(dǎo)的有限方差來計算平滑后的數(shù)據(jù)陣列I(x,y) 的梯度幅值和梯度方向第三步,為了精確定位邊緣,必須細化梯度幅值圖像M(i, j) 中的屋脊帶,只保留幅值局部變化最大的點,這一過程稱為非極大值抑制最后在第四步,對經(jīng)過非極大值抑制的數(shù)據(jù)陣列N(i, j) 分別使用高、低2 個閾值τh 和τl分割圖像,得到兩個閾值邊緣圖像,42,間斷檢測,Canny算子的優(yōu)缺點該算法有較好的抑制噪聲的能力,可以較

21、完整的檢測出邊緣。但比傳統(tǒng)邊緣微分算子復(fù)雜,運算速度慢。另外,Canny 算子的雙閾值是根據(jù)全局特征信息來決定的,這導(dǎo)致了一方面無法消除局部噪聲干擾,另一方面又會丟失灰度值變化緩慢的局部邊緣。可以通過改進雙閾值的選取算法提高Canny 算子的邊緣檢測性能。,43,間斷檢測,44,間斷檢測,45,46,邊緣連接和邊界檢測,邊緣連接由于噪聲、不均勻照明等原因產(chǎn)生邊緣間斷,使得到的一組像素很少能完整地描繪一條邊緣典型的做法是在使用邊緣

22、檢測算法之后,使用連接過程將邊緣像素組合成有意義的邊緣局部處理,47,邊緣連接和邊界檢測,局部處理分析圖像中每個邊緣點(x,y)的一個鄰域內(nèi)的像素,根據(jù)某種準則將所有相似點進行連接,由滿足該準則的像素連接組成的一條邊緣,稱為邊緣連接,又稱為邊緣跟蹤。連接原則比較兩個邊緣點梯度算子的響應(yīng)強度和梯度方向來確定兩個點是否屬于一條邊,48,邊緣連接和邊界檢測,局部處理比較邊緣像素的梯度算子的響應(yīng)強度比較邊緣像素的梯度方向

23、比較梯度向量的方向角當梯度值和方向角都是相似的,則點(x’,y’),與邊點界(x,y)是連接的。,如果,,則點(x,y) 與其鄰域內(nèi)的點,如果,,則點(x,y) 與其鄰域內(nèi)的點,(x’,y’)的梯度響應(yīng)強度相似,(x’,y’)的梯度方向相似,連接算法步驟,49,1)設(shè)定A、T的閾值大小,確定鄰域的大??;2)對圖像上每一個像素的鄰域點進行分析,判斷是否需要連接;3)記錄像素連接的情況,另開一個空間,給不同的邊以不同的標記;

24、4)刪除孤立線段,連接斷開的線段。,50,邊緣連接和邊界檢測,局部處理如果梯度算子的響應(yīng)強度和梯度方向都是相似的,則邊緣點(x,y)和(x’,y’)是連接的,邊緣連接——光柵掃描跟蹤,邊緣跟蹤的方法很多,常見的有光柵跟蹤和輪廓跟蹤光柵掃描跟蹤光柵掃描跟蹤是一種采用電視光柵行掃描順序?qū)τ龅降南袼剡M行分析,從而確定是否為邊緣的跟蹤方法。光柵跟蹤方法的基本思想: 利用檢測準則確定和接受對象點,根據(jù)被接受的對象點和跟蹤準則確定并接

25、受新的對象點,將所有標記為1 且相鄰的對象點聯(lián)接起來就得到了檢測到的細曲線。,51,邊緣連接——光柵掃描跟蹤,使用光柵跟蹤方法,需要遵循下面的三個準則參數(shù)準則:需要事先確定檢測閾值d 、跟蹤閾值t ,且要求d>t;檢測準則:對圖像逐行掃描,將每一行中灰度值大于或等于檢測閾值d 的所有點(稱為接受對象點)記為1; 跟蹤準則:設(shè)置位于第i 行的點(i, j) 為已接受的對象點,如果位于第i +1 行上的相鄰點(i+1,j?1)

26、、(i+1,j)和(i+1,j+1)的灰度值大于或等于跟蹤閾值t ,就將其接受為新的對象點,并記為1。,52,邊緣連接——光柵掃描跟蹤,具體步驟(1) 確定一個較大的閾值d為檢測閾值,把高于該閾值的像素作為對象點。(2) 選擇一個較低的閾值t 作為跟蹤閾值,且要求t<d,該閾值可以根據(jù)不同準則來選擇;可選擇灰度差、梯度方向、對比度等作為跟蹤閾值。(3) 從第一行起用檢測閾值d 逐行對圖像進行掃描,依次將灰度值大于或等于檢測閾

27、值d 的點的位置記為1。(4) 確定跟蹤?quán)徲颍缦聢D中選取的 (i+1,j?1)、(i+1,j)、(i+1,j+1) 。(5) 從第二行起逐行掃描圖像,若圖像中的(i, j) 點為對象點,則在第i +1 行上找該點跟蹤?quán)徲蛑谢叶炔钚∮诨虻扔诟欓撝祎 的鄰點,并確定為新的對象點,將相應(yīng)位置記為1。(6) 對于已檢測出來的某個對象點,進行跟蹤結(jié)束、分支和合并的處理。如果某個對象點(由于步驟(3)的原因產(chǎn)生的對象點)在上一行的對應(yīng)鄰域

28、中沒有對象點,則說明一條新的曲線可開始。(7) 重復(fù)(5)、(6)這兩個步驟,直至圖像中最末一行被掃描完為止。,53,,54,,,,,,,,,,,,,,,邊緣連接——光柵掃描跟蹤,,55,邊緣連接——光柵掃描跟蹤,光柵跟蹤的優(yōu)缺點光柵掃描跟蹤法是一種簡單的利用局部信息、通過掃描的方式將邊緣點連接起來的方法。該跟蹤算法采用電視光柵行掃描順序?qū)τ龅降南袼剡M行分析,從而確定其是否為邊緣。由于光柵掃描跟蹤和掃描方向有關(guān),因此最好沿其他方向

29、再跟蹤一次。,56,邊緣連接——輪廓跟蹤法,一種適用于黑白二值圖像的圖像分割方法,而且輪廓跟蹤改變了光柵跟蹤中掃描方向的單一的缺點,跟蹤方向可以是任意方向,并且有足夠大的跟蹤距離。輪廓跟蹤是改變了鄰域定義和跟蹤準則的一種二值圖像的光柵跟蹤法。算法的具體步驟(1)在靠近邊緣處任取一起始點,然后按照每次只前進一步,步距為一個象素的原則開始跟蹤;(2)當跟蹤中的某步是由白區(qū)進入黑區(qū)時,以后各步向左轉(zhuǎn),直到穿出黑區(qū)為止;(3)當跟蹤中

30、的某步是由黑區(qū)進入白區(qū)時,以后各步向右轉(zhuǎn),直到穿出白區(qū)為止;(4)當圍繞目標邊界循環(huán)跟蹤一周回到起點時,則所跟蹤的軌跡便是目標的輪廓;否則,應(yīng)繼續(xù)按(2)和(3)的原則進行跟蹤。,57,邊緣連接——輪廓跟蹤法,58,,白區(qū)進入黑區(qū),左轉(zhuǎn)黑區(qū)進入白區(qū),右轉(zhuǎn),4 圖像閾值分割,原理,取閾值是一種廣泛使用的圖像分割技術(shù),通過對灰度取閾值后得到的圖像,各個區(qū)域可以分離開,但要將目標提取出來,還需要將各區(qū)域識別標記。,,,閾值分割,60,不同

31、顏色的細胞,61,,圖像輸入,,圖像分割,,參數(shù)測量,數(shù)據(jù)輸出,,細胞自動分析模塊,閾值分割,62,RGB分解,閾值分割,閾值分割,,63,概率和:,,像素和:,閾值分割,直方圖統(tǒng)計特性,64,平均值,類間方差,方差,,,,閾值t,閾值分割,顏色深淺,65,灰度值分布狀態(tài),,,,,,閾值分割,66,基本思想:通過對灰度取閾值后得到的圖像,各個區(qū)域可以分離開原理:,目標圖像灰度圖,確定灰度閾值,分割圖像,,,閾值分割--人工試探分割法,

32、67,,,,,,閾值分割-自動估計全局閾值法,,68,,,,,,69,目標圖片,閾值分割-自動估計全局閾值法,閾值分割-大津單閾值算法,大津算法(Otsu’s Method):基于類間方差的閾值分割單閾值類間方差,70,,,,71,當類間方差最大時,圖像分割效果最好,,通過遍歷嘗試t,當類間方差最大時,t為最佳閾值,,閾值分割-大津單閾值優(yōu)化目標,,,閾值分割-大津單閾值,72,目標圖片,,,閾值分割-大津單閾值,73,,,,,閾值分

33、割-大津雙閾值分割法,74,雙閾值目標優(yōu)化函數(shù),,,,,75,目標RGB圖像,單閾值分割,雙閾值分割,目標灰度圖像,閾值分割-大津雙閾值分割法,76,目標RGB圖像,雙閾值分割,目標灰度圖像,單閾值分割,閾值分割-大津雙閾值分割法,基于區(qū)域的分割,飛機如何被探測到的?,77,78,基于區(qū)域的分割,基本公式分割的目標是將圖像劃分為不同的區(qū)域令R表示整幅圖像,可以將分割看成是將R劃分為n個子區(qū)域的過程,n個子區(qū)域滿足以下條件完備性:

34、連通性:每個Ri都是一個連通區(qū)域獨立性:單一性:互斥性:,區(qū)域增長法,通過象素聚合的區(qū)域增長法是最基本的區(qū)域分割技術(shù)。根據(jù)事先定義的準則將象素或子區(qū)域聚合成更大區(qū)域的過程。,區(qū)域生長的三個問題:種子:進行生長的起點。相似性準則:確定增長的規(guī)則。終止規(guī)則:考慮區(qū)域大小、形狀、相似性等因素。,80,基于區(qū)域的分割,區(qū)域生長算法實現(xiàn)根據(jù)圖像的不同應(yīng)用選擇一個或一組種子選擇一個條件從該種子開始向外擴張,首先把種子像素加入集

35、合,然后不斷將與集合中各個像素連通、且滿足給定條件的像素加入集合上一過程進行到不再有滿足條件的新像素點加入集合為止,81,基于區(qū)域的分割,單連接區(qū)域增長方法:,對圖像進行光柵掃描,求出不屬于任何區(qū)域的象素(根據(jù) 圖像的不同應(yīng)用選擇一個或一組種子,它或者是最亮或最暗 的點,或者是位于點簇中心的點。);,2. 將該點的灰度值與其鄰域內(nèi)不屬于任何一個區(qū)域的 象素灰度值比較,如果其差的絕對值小于某個設(shè)定的門限值,就把它們合并

36、為同一區(qū)域;,3. 對新合并的象素,重復(fù)(2)的操作;,4. 反復(fù)進行(2)(3)的操作,直到不能再增加為止;,5. 返回至(1),重新尋找能為新區(qū)域出發(fā)點的象素。,例:設(shè)有一數(shù)字圖像,如圖所示。檢測灰度為9,平均灰度均勻測 度度量的閾值為2,采用區(qū)域增長技術(shù)對圖像進行分割。,,(8+9+8+8)/4=8.25,(8+8+9+7+7+8+7+8)/8=7.75,8,8,7,7,7,6,8,8,6,8,6,6,6,(6+6

37、+6+8+8+9+7+6+7+8+8+6+7+8)/14=7.14,判斷準則是:如果某像素(種子點8鄰域內(nèi))與種子像素的灰度值差的絕對值小于門限T,則將該像素納入種子像素所在的區(qū)域,(8+7+8+7+8)/5=7.6,84,基于區(qū)域的分割,區(qū)域生長1個種子像素已用深底色標出,畫出T=3的區(qū)域生長結(jié)果。,,,目標圖像,生長點[200,220],生長點[500,220],86,基于區(qū)域的分割,87,基于區(qū)域的分割,區(qū)域分裂和合并的常用的準

38、則同一區(qū)域中最大灰度值與最小灰度值之差或方差小于某選定的閾值;兩個區(qū)域的平均灰度值之差及方差小于某個選定的閾值;兩個區(qū)域的灰度分布函數(shù)之差小于某個選定的閾值;兩個區(qū)域的某種圖像統(tǒng)計特征值的差小于等于某個閾值。,四叉樹分裂原則根據(jù)給定的均勻性檢驗準則P進行四分裂,,基于區(qū)域的分裂--原則,88,,給定的均勻性檢驗準則對全圖按照準則進行分裂 檢查各子塊,直到全部滿足準則,基于區(qū)域的分裂--分裂步驟,準則:最大值與最小

39、值之差小于等于6,89,基于區(qū)域的分裂--分裂結(jié)果:矩陣,,,,,90,四叉樹分裂結(jié)果,局部結(jié)果,目標圖像,基于區(qū)域的分裂--分裂結(jié)果:圖像,91,基于區(qū)域的分裂--分裂結(jié)果:圖像,92,分裂的缺陷:可能存在具有相同性質(zhì)的相鄰區(qū)域改進:分裂后,再合并,,,基于區(qū)域分裂與合并,93,,,94,基于區(qū)域分裂與合并--步驟,改進:分裂后,再合并對分裂后各子塊進行檢查對分裂后的每相鄰兩塊,進行檢查,,,,準則:最大值與最小值之差小于等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論