淺析數(shù)據(jù)挖掘概念與技術(shù)1new_第1頁(yè)
已閱讀1頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、淺析數(shù)據(jù)挖掘概念與技術(shù)淺析數(shù)據(jù)挖掘概念與技術(shù)摘要:隨著信息技術(shù)的迅速發(fā)展,數(shù)據(jù)庫(kù)的規(guī)模不斷擴(kuò)大,而傳摘要:隨著信息技術(shù)的迅速發(fā)展,數(shù)據(jù)庫(kù)的規(guī)模不斷擴(kuò)大,而傳統(tǒng)的查詢(xún)、報(bào)表工具無(wú)法滿(mǎn)足挖掘有效信息的需求,因此,需要一統(tǒng)的查詢(xún)、報(bào)表工具無(wú)法滿(mǎn)足挖掘有效信息的需求,因此,需要一種新的數(shù)據(jù)分析技術(shù)處理大量數(shù)據(jù),并從中抽取有價(jià)值的潛在知種新的數(shù)據(jù)分析技術(shù)處理大量數(shù)據(jù),并從中抽取有價(jià)值的潛在知識(shí),即數(shù)據(jù)挖掘技術(shù)。本文深入淺出地闡述了數(shù)據(jù)挖掘技術(shù)的產(chǎn)

2、識(shí),即數(shù)據(jù)挖掘技術(shù)。本文深入淺出地闡述了數(shù)據(jù)挖掘技術(shù)的產(chǎn)生,概念以及數(shù)據(jù)挖掘的常用技術(shù)。生,概念以及數(shù)據(jù)挖掘的常用技術(shù)。關(guān)鍵詞:數(shù)據(jù)庫(kù)關(guān)鍵詞:數(shù)據(jù)庫(kù)數(shù)據(jù)挖掘數(shù)據(jù)挖掘知識(shí)發(fā)現(xiàn)知識(shí)發(fā)現(xiàn)DMKDD一、一、數(shù)據(jù)挖掘技術(shù)概述數(shù)據(jù)挖掘技術(shù)概述隨著信息技術(shù)的迅速發(fā)展,數(shù)據(jù)庫(kù)的規(guī)模不斷擴(kuò)大,從而產(chǎn)生隨著信息技術(shù)的迅速發(fā)展,數(shù)據(jù)庫(kù)的規(guī)模不斷擴(kuò)大,從而產(chǎn)生了大量的數(shù)據(jù)。為了給決策者提供一個(gè)統(tǒng)一的全局視角,在許多領(lǐng)了大量的數(shù)據(jù)。為了給決策者提供一個(gè)統(tǒng)一的全局

3、視角,在許多領(lǐng)域建立了數(shù)據(jù)倉(cāng)庫(kù),但大量的數(shù)據(jù)往往使人們無(wú)法辨別隱藏在其中域建立了數(shù)據(jù)倉(cāng)庫(kù),但大量的數(shù)據(jù)往往使人們無(wú)法辨別隱藏在其中的能對(duì)決策提供支持的信息,而傳統(tǒng)的查詢(xún)、報(bào)表工具無(wú)法滿(mǎn)足挖的能對(duì)決策提供支持的信息,而傳統(tǒng)的查詢(xún)、報(bào)表工具無(wú)法滿(mǎn)足挖掘這些信息的需求。因此,需要一種新的數(shù)據(jù)分析技術(shù)處理大量數(shù)掘這些信息的需求。因此,需要一種新的數(shù)據(jù)分析技術(shù)處理大量數(shù)據(jù),并從中抽取有價(jià)值的潛在知識(shí),數(shù)據(jù)挖掘(據(jù),并從中抽取有價(jià)值的潛在知識(shí),數(shù)據(jù)

4、挖掘(DataMining)技)技術(shù)由此應(yīng)運(yùn)而生,數(shù)據(jù)挖掘技術(shù)也正是伴隨著數(shù)據(jù)倉(cāng)庫(kù)技術(shù)的發(fā)展術(shù)由此應(yīng)運(yùn)而生,數(shù)據(jù)挖掘技術(shù)也正是伴隨著數(shù)據(jù)倉(cāng)庫(kù)技術(shù)的發(fā)展而逐步完善起來(lái)的。但是并非所有的信息發(fā)現(xiàn)任務(wù)都被視為數(shù)據(jù)挖而逐步完善起來(lái)的。但是并非所有的信息發(fā)現(xiàn)任務(wù)都被視為數(shù)據(jù)挖掘,例如,使用數(shù)據(jù)庫(kù)管理系統(tǒng)查找個(gè)別的記錄,或通過(guò)因特網(wǎng)的掘,例如,使用數(shù)據(jù)庫(kù)管理系統(tǒng)查找個(gè)別的記錄,或通過(guò)因特網(wǎng)的搜索引擎查找特定的搜索引擎查找特定的Web頁(yè)面,則是信息檢

5、索(頁(yè)面,則是信息檢索(infmationretrieval)領(lǐng)域的任務(wù)。)領(lǐng)域的任務(wù)。數(shù)據(jù)挖掘是一個(gè)以數(shù)據(jù)庫(kù)、人工智能、數(shù)理統(tǒng)計(jì)、可視化四大數(shù)據(jù)挖掘是一個(gè)以數(shù)據(jù)庫(kù)、人工智能、數(shù)理統(tǒng)計(jì)、可視化四大支柱技術(shù)為基礎(chǔ),我們知道,描述或說(shuō)明一個(gè)算法設(shè)計(jì)分為三個(gè)部支柱技術(shù)為基礎(chǔ),我們知道,描述或說(shuō)明一個(gè)算法設(shè)計(jì)分為三個(gè)部分:輸入、輸出和處理過(guò)程。數(shù)據(jù)挖掘算法的輸入是數(shù)據(jù)庫(kù),算法分:輸入、輸出和處理過(guò)程。數(shù)據(jù)挖掘算法的輸入是數(shù)據(jù)庫(kù),算法規(guī)律的搜索。

6、傳統(tǒng)的查詢(xún)和報(bào)表處理只是得到事件發(fā)生的結(jié)果,并規(guī)律的搜索。傳統(tǒng)的查詢(xún)和報(bào)表處理只是得到事件發(fā)生的結(jié)果,并沒(méi)有深入研究發(fā)生的原因,而數(shù)據(jù)挖掘則主要了解發(fā)生的原因,并沒(méi)有深入研究發(fā)生的原因,而數(shù)據(jù)挖掘則主要了解發(fā)生的原因,并且以一定的置信度對(duì)未來(lái)進(jìn)行預(yù)測(cè),用來(lái)為決策行為提供有利的支且以一定的置信度對(duì)未來(lái)進(jìn)行預(yù)測(cè),用來(lái)為決策行為提供有利的支持。持。二、數(shù)據(jù)挖掘的常用技術(shù)二、數(shù)據(jù)挖掘的常用技術(shù)機(jī)器學(xué)習(xí)、數(shù)理統(tǒng)計(jì)等方法是數(shù)據(jù)挖掘進(jìn)行知識(shí)學(xué)習(xí)的重要

7、方機(jī)器學(xué)習(xí)、數(shù)理統(tǒng)計(jì)等方法是數(shù)據(jù)挖掘進(jìn)行知識(shí)學(xué)習(xí)的重要方法。數(shù)據(jù)挖掘算法的好壞將直接影響到所發(fā)現(xiàn)知識(shí)的好壞,目前對(duì)法。數(shù)據(jù)挖掘算法的好壞將直接影響到所發(fā)現(xiàn)知識(shí)的好壞,目前對(duì)數(shù)據(jù)挖掘的研究也主要集中在算法及其應(yīng)用方面。統(tǒng)計(jì)方法應(yīng)用于數(shù)據(jù)挖掘的研究也主要集中在算法及其應(yīng)用方面。統(tǒng)計(jì)方法應(yīng)用于數(shù)據(jù)挖掘主要是進(jìn)行數(shù)據(jù)評(píng)估;機(jī)器學(xué)習(xí)是人工智能的另一個(gè)分?jǐn)?shù)據(jù)挖掘主要是進(jìn)行數(shù)據(jù)評(píng)估;機(jī)器學(xué)習(xí)是人工智能的另一個(gè)分支,也稱(chēng)為歸納推理,它通過(guò)學(xué)習(xí)訓(xùn)練數(shù)據(jù)集

8、,發(fā)現(xiàn)模型的參數(shù),支,也稱(chēng)為歸納推理,它通過(guò)學(xué)習(xí)訓(xùn)練數(shù)據(jù)集,發(fā)現(xiàn)模型的參數(shù),并找出數(shù)據(jù)中隱含的規(guī)則。其中關(guān)聯(lián)分析法、人工神經(jīng)元網(wǎng)絡(luò)、決并找出數(shù)據(jù)中隱含的規(guī)則。其中關(guān)聯(lián)分析法、人工神經(jīng)元網(wǎng)絡(luò)、決策樹(shù)和遺傳算法在數(shù)據(jù)挖掘中的應(yīng)用很廣泛。策樹(shù)和遺傳算法在數(shù)據(jù)挖掘中的應(yīng)用很廣泛。(一)關(guān)聯(lián)分析法。從關(guān)系數(shù)據(jù)庫(kù)中提取關(guān)聯(lián)規(guī)則是幾種主要(一)關(guān)聯(lián)分析法。從關(guān)系數(shù)據(jù)庫(kù)中提取關(guān)聯(lián)規(guī)則是幾種主要的數(shù)據(jù)挖掘方法之一。挖掘關(guān)聯(lián)是通過(guò)搜索系統(tǒng)中的所有事物,并的

9、數(shù)據(jù)挖掘方法之一。挖掘關(guān)聯(lián)是通過(guò)搜索系統(tǒng)中的所有事物,并從中找到出現(xiàn)條件概率較高的模式。關(guān)聯(lián)實(shí)際上就是數(shù)據(jù)對(duì)象之間從中找到出現(xiàn)條件概率較高的模式。關(guān)聯(lián)實(shí)際上就是數(shù)據(jù)對(duì)象之間相關(guān)性的確定,用關(guān)聯(lián)找出所有能將一組數(shù)據(jù)項(xiàng)和另一組數(shù)據(jù)項(xiàng)相相關(guān)性的確定,用關(guān)聯(lián)找出所有能將一組數(shù)據(jù)項(xiàng)和另一組數(shù)據(jù)項(xiàng)相聯(lián)系的規(guī)則,這種規(guī)則的建立并不是確定的關(guān)系,而是一個(gè)具有一聯(lián)系的規(guī)則,這種規(guī)則的建立并不是確定的關(guān)系,而是一個(gè)具有一定置信度的可能值,即事件發(fā)生的概率。

10、關(guān)聯(lián)分析法直觀、易理定置信度的可能值,即事件發(fā)生的概率。關(guān)聯(lián)分析法直觀、易理解,但對(duì)于關(guān)聯(lián)度不高或相關(guān)性復(fù)雜的情況不太有效。解,但對(duì)于關(guān)聯(lián)度不高或相關(guān)性復(fù)雜的情況不太有效。(二)人工神經(jīng)元網(wǎng)絡(luò)((二)人工神經(jīng)元網(wǎng)絡(luò)(ANN),是數(shù)據(jù)挖掘中應(yīng)用最廣泛的,是數(shù)據(jù)挖掘中應(yīng)用最廣泛的技術(shù)。神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)挖掘方法是通過(guò)模仿人的神經(jīng)系統(tǒng)來(lái)反復(fù)訓(xùn)技術(shù)。神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)挖掘方法是通過(guò)模仿人的神經(jīng)系統(tǒng)來(lái)反復(fù)訓(xùn)練學(xué)習(xí)數(shù)據(jù)集,從待分析的數(shù)據(jù)集中發(fā)現(xiàn)用于預(yù)測(cè)和分

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論