版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、MaterialsScienceandEngineeringA528 (2011) 7115–7123ContentslistsavailableatScienceDirectMaterialsScienceandEngineeringAjournalhomepage:www.elsevier.com/locate/mseaEffectsofheattreatmentprocessesonmicrostructureandcreeppr
2、opertiesofa highnitrogen15Cr–15NiausteniticheatresistantstainlesssteelVuTheHa a,b,?, WooSangJung ba Nano-MaterialScienceandEngineeringFaculty,UniversityofScienceandTechnology,113-Gwahangno,Yuseong-gu,Daejeon,RepublicofK
3、oreab MaterialsResearchDivision,KoreaInstituteofScienceandTechnology,39-1Halwolgok-dong,Wolsong-gil5,Seoungbuk-gu,Seoul,136-791,RepublicofKoreaa r t i c l e i nf oArticlehistory:Received12November2010Receivedinr
4、evisedform18March2011Accepted22June2011Available online 28 June 2011Keywords:NiobiumcarbonitrideCopperprecipitateHeattreatmentHighnitrogen15Cr–15NiCreepstrengthab s t r a c tConventionalthermo-mechanicaltreatment(C
5、TMT) andmodifiedthermo-mechanicaltreatment(MTMT)processwereappliedfor manufacturingahigh nitrogenniobium-stabilized15Cr–15Niausteniticalloy.CTMT process consistsof5 h of solutiontreatmentat 1270 ?C followedbywater
6、quenchingandsubsequentaging at 820 ?Cfor 50 h. MTMTprocessdiffers fromCTMT process in hot plasticdeformationperformedimmediatelyafter the solutiontreatmentat 1270 ?C and longer agingtime. Microstructureand
7、creeppropertiesof the steel obtainedby bothprocessingrouteswere investigated.Creeprupturetestsat 750 ?C showeddoubleincreasein rupturetime broughtabout by MTMTprocess.Examinationofcreptmicrostructureby transm
8、issionelectronmicroscopyrevealedthat the improved creep propertiesinMTMT processwere mainlydue to improveddistributionuniformityof fine nano-sizedcarbonitrideprecipitatesin the austeniticmatrix and that MTMT
9、 processhas no effectson the numberdensityanddistributionof copper precipitatespresentin the steel.However,the creep ductility in MTMT processdrasticallyreducedcomparingto CTMT process.The higher densit
10、yof grain boundariesdue to finergrainrecrystallizedmicrostructuresand the formationof highervolumefractionof coarserM23C6 precipitatesatthe boundariesare believedto be the mainreasonfor the lowercreep ducti
11、lityin MTMT process.© 2011 Elsevier B.V. All rights reserved.1.IntroductionNitrogen-alloyedheatresistantausteniticstainlesssteelsarenovelmaterialswhichareunderintensestudiesanddevelop-mentduringrecentyears.Thesest
12、eelsarepotentialmaterialsforconstructioncomponentsinultra-supercriticalfossilpowerplants(steamturbines,boilertubes,etc.)duetotheirexcellentcreepstrengthandreasonablelowercostcomparingtothecostofnickel-basesuperalloys[1,2
13、].Itisofagreatinteresttoincreasethecreepstrengthofthesteelsbecauseofenvironmentalandeconomicalreasonsinoperationoftheplants[3].Thecreeppropertiesofthematerialsdependonanumberoffactors.Amongthemthemostimportantarefinedisp
14、ersionofthermallystablenano-sizedparticlesintheausteniticmatrix,grainsizeandgrainboundarycharacter,precipitationofdeleteriousphasesduringcreepandsoon.Maximumcreeprupturelifecanbeachievedonlythoughchoosingproperchemicalco
15、mpositionandoptimumconditionsforheattreatmentprocesses.Lotsofinvestiga-tions[4–7]inrecentyearshaveexaminedcreepbehaviorandcreep? Correspondingauthorat:Nano-MaterialScienceandEngineeringFaculty,Uni-versityofScienceandTech
16、nology,113-Gwahangno,Yuseong-gu,Daejeon,RepublicofKorea.Tel.:+8229586807;fax:+8229585509.E-mailaddress:vutheha@kist.re.kr(V.T.Ha).characteristicsofthesteels.However,theworksinvolvedinpro-cessingfieldforthematerialsrarely
17、canbefound.Therefore,thereisanimperativeneedtounderstandanadopt-abilityofthemate-rialstoindustriallyapplicableheattreatmentprocesses.Throughknowingresponsebehaviorofthematerialstotheheattreatmentprocessestheimportantmicr
18、ostructureconstituentsaffectingthecreeppropertiesofthematerialscanbeoptimizedwhichenabletoachievethebestperformanceofthecomponentsduringlongtermserviceathightemperatureandhighpressureconditions.Thefocusofthisstudyistoinv
19、estigatetheeffectsoftwodiffer-entheattreatmentprocessesoncreeppropertiesinahighnitrogenniobium-stabilizedheatresistant15Cr–15Niausteniticstainlesssteel.Thecreeppropertiesandmicrostructureofthesteelproducedbytheheattreatm
20、entshavebeenexaminedandcompared.Thedif-ferencebetweencreeppropertiesofthesteelintheappliedheattreatmentprocesseshasbeendiscussedandcorrelatedwiththemicrostructurechangesbroughtaboutbydifferentappliedthermo-mechanicalcond
21、itionsofthetwoheattreatmentroutes.2.AlloydesignconceptBasechemicalcompositionFe–15Cr–15Ni–4Mn–0.46Si–1.25Mo–3Cu–Nb–C–N(wt%)oftheinvestigatedausteniticsteelwasformulatedbyconsultingtheSchaefflerdiagram[8]. Forthe0921-509
22、3/$–seefrontmatter ©2011 Elsevier B.V. All rights reserved.doi:10.1016/j.msea.2011.06.061V.T.Ha,W.S.Jung/MaterialsScienceandEngineeringA528 (2011) 7115–7123 7117Fig.2.CreeprupturestrengthofthestudiedsteelobtainedbyC
23、TMTandMTMTprocessincomparisonwithrupturestrengthofstandardtype347stainlesssteel[11].Fig.3.Creepstrainvs.timecurvesforthestudiedsteelshowinglowercreepduc-tilityofthesamplesobtainedbyMTMTprocess.investigatedsteel.Creeprupt
24、ureelongationdataareremarkablyhigherforCTMTprocessasseeninFig.3.4.2.MicrostructuresFig.4aandbshowsgrainstructureinthecreptspecimensobtainedbyCTMTandMTMTprocess,respectively.Themainchar-acteristicofthegrainstructureinCTMT
25、-specimensisamultimodalgrainsizedistributionwithaveragegrainsizeofaround220?m.Thedeviationofthegrains’diametersfromtheaveragevalueindi-catedthatabnormalgraingrowthhasoccurredduringthesolutiontreatment.RecrystallizedMTMT-
26、specimensshoweduniformgrainsizestructurewithaveragegrainsizeofaround40?m.Themicrostructuresofquenchedsolutiontreatedspecimensinthebothheattreatmentscontainasmallnumberofun-dissolvedcoarserNb(C,N)precipitatesinheritedfrom
27、as-castconditionsandlargerquantity(about130particles/?m2)ofevenlydistributedfineparticleswithsize15–40nm(Fig.5a).Selectedareadiffrac-tionpattern(Fig.5b)andEDSanalysis(Fig.5c)indicatedthatthesenano-sizedprecipitatesarepur
28、eniobiumcarbonitrideswith-outexception.Todistinguishthecarbonitridespresentalreadyinthesolutiontreatedmicrostructurefromthoseformedduringthesubsequentagingandcreep,theformerwillbecalledprimarypre-cipitatesandthelatterwil
29、lbedesignatedassecondaryprecipitates.Theprecipitatemorphologyinas-agedandas-creptmicrostruc-turechangedsignificantlybyprecipitationofthesecondarynano-sizedcarbonitrides.Thenewlyformedparticlesusuallyhaverodorcuboidalshap
30、ewithlengthrangedfrom10to60nmandwidthrangedfrom10to30nm.Selectedareadiffractionpattern(SADP)ofthinfoilsamplespreparedfromCTMT-andMTMT-specimensshowedparallelorientationrelationshipofthelatticeplanesofthebothprimaryandsec
31、ondarynano-sizedcarbonitrideswiththelatticeplanesoftheausteniticmatrix(Fig.6d).EDSanalysis(Fig.6c)demonstratedthatthesecondarycarbonitridesarerichinNbandCr,havethesamechemicalcom-positionof(at.%):Nb58.5–59.5,Cr38–40,Fe2–
32、3,inbothCTMT-andMTMT-specimens.InCTMT-specimensmostofthesecondarycarbonitridespreferentiallyaggregatedwiththepre-existedpri-marycarbonitridestoformelongatedclustersconsistingofahighnumberoftightlydistributedparticles(Fig
33、.6a).Theclusterswerenon-uniformlydistributedthroughouttheausteniticmatrix.Theirdensitycanreachalevelofseveraltensclusters/?m2 insomeareaswhileincertainareasonlyafewclusters/?m2 canbefound.InMTMT-specimens,onthecontrary,t
34、hesecondaryandtheprimarycarbonitrideswereevenlydistributedwithinthematrix(Fig.6b).ItwasobservedthatthesecondarycarbonitridesinMTMT-specimensformedpreferentiallyatthepointswherethedislocationsintersectedwitheachotherassee
35、ninFig.7.Inmanycases,theparticlesformedalsoatthepre-existedprimarynano-sizedcarbonitridesFig.8).Certainnumberofcoarserelon-gatedpuresecondaryNb(C,N)precipitates(Fig.6b)wasobservedtoformduringaginginMTMTprocess.Quantitati
36、vely,recrystallizedMTMT-specimenscontainedsignificantlylowernumberofthenano-sizedcarbonitrideswhichisoppositewithourexpectationsinincreasinganumberoftheprecipitatesthroughperformedhotrolling.Apartfromthefinenano-sizedcar
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- [雙語翻譯]--外文翻譯--15 cr-15ni高氮耐熱奧氏體不銹鋼熱處理工藝對顯微組織和蠕變特性的影響
- 2011年--外文翻譯--15 cr-15ni高氮耐熱奧氏體不銹鋼熱處理工藝對顯微組織和蠕變特性的影響
- 2011年--外文翻譯--15 cr-15ni高氮耐熱奧氏體不銹鋼熱處理工藝對顯微組織和蠕變特性的影響
- 2011年--外文翻譯--15 Cr-15Ni高氮耐熱奧氏體不銹鋼熱處理工藝對顯微組織和蠕變特性的影響(英文).pdf
- 2011年--外文翻譯--15 Cr-15Ni高氮耐熱奧氏體不銹鋼熱處理工藝對顯微組織和蠕變特性的影響(英文).pdf
- 2011年--外文翻譯--15 cr-15ni高氮耐熱奧氏體不銹鋼熱處理工藝對顯微組織和蠕變特性的影響(譯文)
- 2011年--外文翻譯--15 Cr-15Ni高氮耐熱奧氏體不銹鋼熱處理工藝對顯微組織和蠕變特性的影響(譯文).doc
- 2011年--外文翻譯--15 Cr-15Ni高氮耐熱奧氏體不銹鋼熱處理工藝對顯微組織和蠕變特性的影響(譯文).doc
- [雙語翻譯]--外文翻譯--氮含量對極低碳9cr耐熱鋼在顯微組織方面和蠕變行為的影響
- [雙語翻譯]---外文翻譯--老化的高氮奧氏體不銹鋼的機(jī)械性能
- 2004年--外文翻譯--氮含量對極低碳9cr耐熱鋼在顯微組織方面和蠕變行為的影響(英文)
- 高氮奧氏體不銹鋼的高溫蠕變行為研究.pdf
- 2004年--外文翻譯--氮含量對極低碳9Cr耐熱鋼在顯微組織方面和蠕變行為的影響(英文).pdf
- 2004年--外文翻譯--氮含量對極低碳9Cr耐熱鋼在顯微組織方面和蠕變行為的影響(英文).pdf
- [雙語翻譯]--外文翻譯--無鎳奧氏體高氮不銹鋼熱變形及組織演變
- 2004年--外文翻譯--氮含量對極低碳9cr耐熱鋼在顯微組織方面和蠕變行為的影響
- 2004年--外文翻譯--氮含量對極低碳9cr耐熱鋼在顯微組織方面和蠕變行為的影響
- 2004年--外文翻譯--氮含量對極低碳9cr耐熱鋼在顯微組織方面和蠕變行為的影響(譯文)
- 2004年--外文翻譯--氮含量對極低碳9Cr耐熱鋼在顯微組織方面和蠕變行為的影響(譯文).doc
- 2004年--外文翻譯--氮含量對極低碳9Cr耐熱鋼在顯微組織方面和蠕變行為的影響(譯文).doc
評論
0/150
提交評論