版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Fusion Engineering and Design 84 (2009) 1708–1712Contents lists available at ScienceDirectFusion Engineering and Designjournal homepage: www.elsevier.com/locate/fusengdes Thermal structural analysis of SST-1 vacuum ve
2、ssel and cryostat assembly using ANSYSProsenjit Santra a,? , Vijay Bedakihale a , Tata Ranganath ba Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India b Tractebel Engineers fax: +91 7923962277.
3、E-mail address: prosenjit@ipr.res.in (P. Santra).the inner wall of VV, ICR and ports. The hot nitrogen enters the sys- tem through two inlet headers, covers different part of VV/ICR/ports and exits through two outlet h
4、eaders.1.2. Cryostat (CS)SST-1 cryostat is a 16-sided polygon shaped outer VV made of SS 304L which encloses plasma chamber (VV) TF/PF coils and LN2 thermal radiation shields. Cryostat provides high vacuum barrier arou
5、nd plasma VV and surrounding cold mass and isolates super conducting coils from ambient pressure and temperature. Cryostat has openings for 16 radial ports, and 32 vertical ports of SST-1. It is mounted on a base fram
6、e and provides structural support for VV, in-vessel components, cooling circuits and cold mass.2. SS 304L material property detailsThe details of the structural material SS 304L of which the SST-1 VV/CS is made of are m
7、entioned in Table 1. As a post-fabrication FE analysis is being attempted with existing material test reports, tensile/yield stress, elongation values, from material test reports are considered here.0920-3796/$ – see
8、front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.fusengdes.2009.01.042P. Santra et al. / Fusion Engineering and Design 84 (2009) 1708–1712 1709Fig. 1. Iso metric cut view of SST-1.3. Solid and f
9、inite element (FE) model of VV/CSThe thermal structural analysis of SST-1 VV/CS was carried out using finite element package ANSYS [3]. As SST-1 VV/CS is symmetric in toroidal direction (16 identical ports/cryostat) wit
10、h symmetric loadings, only 1/16th [4,5] is modeled for coupled thermal structural analysis taking advantage of mirror symme- try thereby reducing model size and minimum use of computer resources. Only the portion
11、 of the baking channels welded to the VV/ring is considered for analysis. 3D thermal Shell 57 and 3D Shell 41 were chosen for thermal analysis and structural analysis for meshing areas. 3D Link 34 for thermal convecti
12、on analysis and 3D Beam 4 were chosen for structural analysis of baking channels. The 1/16th solid model (Fig. 2a) has 463 key-points, 654 lines and 231 areas while the 1/16th FE model (Fig. 2b) has 8948 nodes and 1
13、6,379 elements. The thickness of various components of VV/CS as input for real constants of shell and beam in ANSYS elements is mentioned in Table 2.4. Boundary and loading conditions4.1. Boundary conditions (BC)As 1/1
14、6th is modeled for FE analysis therefore symmetric BC was applied at outer most edges of ICRs, lip joints, cryostat and support column. Symmetric BC implies that in plane rotations and out of plane translations are zer
15、o. Also the base and top of inner wall ofTable 1 Material properties of SS 304L.SI. no. Material specifications Typical valuesFig. 2. (a) Solid model of SST-1 VV/CS and (b) FE model of SST-1 VV/CS.cryostat and column ba
16、se are completely restrained in all DOF to prevent any un-constrained movement. Baking channels in rings and vessel sector are completely restrained in all DOF to prevent any unconstrained movement.Table 21 Young’s Mo
17、dulus (N/mm2 )196200 Thickness of various VV/CS components of SST-1.SI. no. Component/geometry name Thickness (mm)2 Poissions ratio 0.293 Density (kg/mm3 ) 0.8E-05 1 Vessel sector 104 Coefficient of thermal expansion (
18、mm/mm/? C)5 Thermal conductivity (W/mm K)17 × 10?060.0163 and 0.0214 at 25 ? C and 500 ? C2 Vessel port bed 063 Vessel port flange 304 Vessel top and bottom port 065 Vessel interconnecting ring 106 Lip joint 036
19、Specific heat (J/kg K) 500 and 563 at 25 ? C and 400 ? C7 Emissivity 0.11 (polished surface)8 Tensile strength (MPa) 554 (from material test certificate)9 Yield strength (MPa) 281 (from material test certificate)10 Elong
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--使用ansys對(duì)sst-1真空容器和低溫恒溫容器裝配體進(jìn)行熱結(jié)構(gòu)分析
- 外文翻譯--使用ansys對(duì)sst-1真空容器和低溫恒溫容器裝配體進(jìn)行熱結(jié)構(gòu)分析
- 外文翻譯--使用ANSYS對(duì)SST-1真空容器和低溫恒溫容器裝配體進(jìn)行熱結(jié)構(gòu)分析.docx
- 外文翻譯--使用ANSYS對(duì)SST-1真空容器和低溫恒溫容器裝配體進(jìn)行熱結(jié)構(gòu)分析.docx
- thermal structural analysis of sst-1 vacuum vessel and cryostat assembly using ansys
- 高真空多層絕熱低溫容器真空喪失試驗(yàn)研究.pdf
- 基于高真空VD-MLI技術(shù)的低溫容器傳熱及結(jié)構(gòu)分析.pdf
- 復(fù)合絕熱低溫容器性能與真空喪失后的熱響應(yīng)研究.pdf
- Thermal structural analysis of SST-1 vacuum vessel and cryostat assembly using ANSYS.pdf
- Thermal structural analysis of SST-1 vacuum vessel and cryostat assembly using ANSYS.pdf
- 低溫壓力容器及低溫低應(yīng)力容器的應(yīng)用
- 容器畢業(yè)設(shè)計(jì)外文翻譯
- 低溫恒溫槽的使用和維護(hù)
- 基于ANSYS的電動(dòng)汽車用直流濾波電容器熱分析.pdf
- 空間低溫容器支撐結(jié)構(gòu)設(shè)計(jì)及特性分析.pdf
- 16mndr低溫容器板
- 鋰離子電容器的表征和建模外文翻譯
- 探索低溫壓力容器設(shè)計(jì)
- 16mndr低溫容器板
- 高真空多層絕熱低溫容器內(nèi)吸氣劑的吸氣特性研究.pdf
評(píng)論
0/150
提交評(píng)論