版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 外文原文</b></p><p><b> where:</b></p><p> D1, m = Fracture coefficients.</p><p> t = Loading time in seconds.</p><p> The correla
2、tion used for the D1 fracture parameter is:</p><p><b> (3.3.56)</b></p><p><b> where:</b></p><p> T = Test temperature () (i.e., 0, -10, and –20 )</p&g
3、t;<p> Va = Air voids (%)</p><p> VFA = Void filled with asphalt (%) = 100</p><p> Vbeff = effective binder content, %</p><p> ARTFO = Intercept of binder Viscosity-Tempe
4、rature relationship for the RTFO condition</p><p> For the m parameter, the correlation used is:</p><p><b> (3.3.57)</b></p><p><b> where:</b></p>
5、<p> T = Test temperature () (i.e., 0, -10, and –20 )</p><p> Va = Air voids (%)</p><p> VFA = Void filled with asphalt (%)</p><p> Pen77 = Penetration at 77 = </p>
6、<p> A = Intercept of binder Viscosity-Temperature relationship</p><p> VTS = Slope of binder Viscosity-Temperature relationship</p><p> The outcome of the m value has been set to a low
7、er limit of 0.01.</p><p> For all three levels of data input, the Design Guide procedure requires tensile strength at–10oC. Level 1 and 2 requires actual test data for tensile strength, whereas, level 3 has
8、 built in typical values based upon the asphalt mix properties, similar to creep compliance values.</p><p> For Levels 1 and 2, the strength test is conducted on the same test specimen that is used to estab
9、lish the 100 second creep test. After the creep test is completed, failure is evaluated using a load rate of 51 mm per minute. The reported tensile strengths are the average of the three replicates used.</p><p
10、> In the recommended test protocol, a special procedure is utilized to determine the "failure load" achieved during the indirect tensile test. This is again an important modification because the failure loa
11、d has been found to be less than the maximum load that the specimen can undergo. Thus, once the instant of failure is found (approach uses the deflection measurement difference), the failure load can be defined and the t
12、ensile strength computed from:</p><p><b> (3.3.58)</b></p><p><b> where:</b></p><p> Pf = Failure load.</p><p> Csx = Correction factor (pre
13、viously defined).</p><p> t = Specimen thickness.</p><p> D = Specimen diameter.</p><p> For Level 3 analysis, the tensile strength at –10 oC was also correlated with mixture pro
14、perties as with the creep compliance fracture parameters. The best indicators were the air voids, the void filled with asphalt content, the Penetration at 77 oF, and the A intercept of the binder temperature-viscosity re
15、lationship for the RTFO condition. The following correlation is used in the analysis:</p><p><b> (3.3.59)</b></p><p> where, the tensile strength (St) is given in psi. The outcome
16、of the equation was set to a lower limit of 100 psi.</p><p> Based on the above correlations for Level 3 analysis, default values for creep compliance and tensile strength for several binders used in this a
17、nalysis were calculated. A summary of the results is presented in Appendix HH.</p><p> Other inputs required are test duration, thickness of the asphalt layer, and coefficient of thermal contraction. For th
18、e coefficient of thermal contraction, the program has two options. In one instance, mixture VMA, aggregate thermal contraction and asphalt thermal contraction values are required for estimating the mix coefficient of the
19、rmal contraction or the user can directly enter the value for the mix thermal coefficient.</p><p> Step 2: Development of the master creep compliance curve</p><p> Enhanced data analysis techn
20、iques (through the new program MASTER are claimed to provide accurate evaluations of the time-temperature shift factor (aT) and creep compliance model statistical fitting techniques through Prony and Power Model forms, a
21、s well as the development of the creep compliance master curve (CCMC).</p><p> In this analysis, a special data "trimming" technique is used to provide the best estimate of the mix response parame
22、ters. If three specimen replicates are used, each having measurements on both faces, a total of six strain (compliance) versus time curves can be developed. The trimming approach recommends elimination of the extreme hig
23、h and low readings and then utilization of the averaging of the remaining four measurement strain time responses.</p><p> Finally, the new procedure no longer requires the binder stiffness to extend the mix
24、ture creep compliance results to longer loading time for the construction of the CCMC. The results of the CCMC analysis are fit to a Prony series defined by:</p><p><b> ?。?.3.60)</b></p>&
25、lt;p><b> ?。?.3.61)</b></p><p><b> Where:</b></p><p> ξ = reduced time.</p><p> t = real time.</p><p> aT = temperature shift factor.</
26、p><p> D(ξ) = creep compliance at reduced time ξ.</p><p> prony series parameters.</p><p> The results of the master creep compliance curve are also fit to a Power Model defined by:
27、</p><p><b> (3.3.62)</b></p><p> The reason for determining an additional model is due to the fact that the Power slope parameter, m, is eventually used to compute several fracture
28、 (crack propagation)</p><p> parameters in the fracture model.</p><p> Step 3: Prediction of thermal stresses</p><p> Using viscoelastic transformation theory, the compliance, D(
29、t), can be related to there laxation modulus, Er, of the asphalt mix. Knowledge of this parameter, coupled with the temperature data obtained from the EICM model, allows for the prediction of the thermal stress at any gi
30、ven depth and time within the asphalt layer.</p><p> The relaxation modulus function is obtained by transforming the creep compliance function. The relaxation modulus is represented by a generalized Maxwell
31、 model and expressed by a Prony series relationship:</p><p><b> (3.3.63)</b></p><p><b> where:</b></p><p> E(ξ) = Relaxation modulus at reduced time ξ.<
32、;/p><p> Ei,λI = Prony series parameters for master relaxation modulus curve</p><p> (spring constants or moduli and relaxation times for the Maxwell</p><p> elements).</p>&
33、lt;p> The knowledge of the relaxation modulus function allows for the computation of the thermal stresses in the pavement according to the following constitutive equation:</p><p><b> ?。?.3.64)</
34、b></p><p><b> where:</b></p><p> σ(ξ) = Stress at reduced time ξ.</p><p> E(ξ-ξ′) = Relaxation modulus at reduced time ξ-ξ′.</p><p> ε = Strain at re
35、duced time ξ (= α (T(ξ′ ) - T0)).</p><p> α = Linear coefficient of thermal contraction.</p><p> T(ξ′) = Pavement temperature at reduced time ξ′.</p><p> T0 = Pavement temperatur
36、e when σ = 0.</p><p> ξ′ = Variable of integration.</p><p> Step 4: Growth of the thermal crack length computation</p><p> Fracture mechanics (Paris’ Law) is used to compute the
37、growth of the thermal crack length within the asphalt layer. This is accomplished by knowledge of the stress intensity factor, K, as well as the A and n fracture parameters obtained from the creep compliance and strength
38、 of the mixture.</p><p> TCMODEL is used to predict the amount of transverse cracking expected in the</p><p> pavement system. As previously noted, the climatic input and viscoelastic properti
39、es</p><p> (compliance-relaxation modulus) allow for the computation of the thermal stress, at any given time and location within the asphalt layer. Once this is accomplished, fracture mechanics, based upon
40、 Paris’ Law, is used to compute the stress intensity and fracture properties of the material.</p><p> The stress intensity parameter, K, has been formulated by developing a simplified equation based upon th
41、eoretical FEM studies and results. From this analysis, it was determined that K could be estimated from: </p><p><b> (3.3.65)</b></p><p><b> where:</b></p><
42、;p> K=Stress intensity factor.</p><p> σ = Far-field stress from pavement response model at depth of crack tip.</p><p> Co = Current crack length, feet.</p><p> The crack pro
43、pagation model used in the thermal fracture model is:</p><p><b> (3.3.66)</b></p><p><b> where:</b></p><p> ΔC = Change in the crack depth due to a coolin
44、g cycle.</p><p> ΔK = Change in the stress intensity factor due to a cooling cycle.</p><p> A, n = Fracture parameters for the asphalt mixture.</p><p> The approach used to evalu
45、ate the A and n parameters is based, in part, upon previous work (14,15,16). Recalling that the master creep compliance curve can be expressed by the power function to yield:</p><p><b> ?。?.3.67)</b
46、></p><p> The m value, derived from the compliance curve is used to compute the n fracture</p><p> parameter through the equation:</p><p><b> ?。?.3.68)</b></p>
47、;<p> Once the n value is known, the A fracture parameter is computed from the equation:</p><p> (3.3.69) </p><p><b> where:</b></p><p> E = Mixture stiffnes
48、s, psi.</p><p> σm = Undamaged mixture tensile strength, psi.</p><p> β = Calibration parameter.</p><p> Step 5: Length of thermal cracks computation</p><p> The de
49、gree of cracking (expressed as the length of thermal-transverse cracks occurring in a pavement length of 500 ft) is predicted from an assumed relationship between the probability distribution of the log of the crack dept
50、h to HMA layer thickness ratio and the percent of cracking.</p><p> The relation of the computed crack depth to an amount of cracking (crack frequency) is represented by the following expression:</p>
51、<p><b> (3.3.70)</b></p><p><b> (3.3.71) </b></p><p><b> where:</b></p><p> Cf = Observed amount of thermal cracking.</p><p&
52、gt;<b> β1=</b></p><p> Regression coefficient determined through field calibration.</p><p> N () = Standard normal distribution evaluated at ().</p><p> σ = Standard
53、 deviation of the log of the depth of cracks in the pavement.</p><p> C = Crack depth.</p><p> hac = Thickness of asphalt layer.</p><p> Thermal Cracking Model Assumptions</p&
54、gt;<p> The maximum amount of thermal cracking assumed in the approach is:</p><p> of pavement length.</p><p> This translates into a crack spacing of one crack (full 12-ft lane width)
55、 per 15 ft of pavement length. While this is the maximum assumed value; the model cannot predict more than 50 percent of this maximum value because failure occurs when the average crack depth equals (reaches) the thickne
56、ss of the asphalt layer.</p><p> Thermal Cracking Reliability</p><p> The calibration of the thermal cracking model was accomplished at three hierarchical levels of analysis. Forty two PTI pav
57、ement sections were used for the calibration: 22 GPS sections from the LTPP database, 14 sections from the Canadian C-SHRP program,one section from Peoria, IL, and 5 Mn ROAD cells from the Minnesota DOT. Details and loca
58、tion of the sections are found in Appendix HH.</p><p> The reliability of the thermal cracking prediction was evaluated in two different ways: by using the actual historic pavement temperatures during the d
59、esign period, and by using estimated temperatures based on average of historic records. The predicted thermal cracking was compared to the measured thermal cracking and the prediction errors were found.</p><p&
60、gt; The error analyses for Level are shown in figure 3.3.25 and 3.3.26. The average</p><p> prediction errors were found to be –9.0 ft and 16.2 ft. for the first and second approaches, respectively. This c
61、omparison illustrates the power and the importance of inputting actual historic climatic data for the design period instead of estimated data.</p><p> Figure 3.3.25. Level 1 prediction errors ( actual pavem
62、ent temperature).</p><p> Figure 3.3.26. Level 1 prediction errors (estimated pavement temperatures based on</p><p> historic data)</p><p> For Level 2 analysis, predicted therma
63、l cracking values were obtained using the same analyses described for Level 1. The predicted and the measured thermal cracking were compared and the prediction errors are shown in figures 3.3.27 and 3.3.28. The average p
64、rediction errors were found to be 30.1 ft and 49.7 ft. for the first and second approaches, respectively. The difference in errors highlights the importance of having accurate and actual input pavement temperatures.</
65、p><p> Figure 3.3.27. Level 2 prediction errors (actual pavement temperature)</p><p> Figure 3.3.28. Level 2 prediction errors (estimated pavement temperatures based on</p><p> hist
66、oric data)</p><p> Data for 36 LTPP sections (156 observations) was collected and the Level 3 analysis was performed using twelve different combinations: three values for the adjustment factor on the fractu
67、re parameter A on the Paris Law (β=1.0, 3.0, and 5.0), and four different ways to determine the measured thermal cracking: Sum of Low, Medium, and High Severity Cracking (3a); Summation of Medium and High (3b); High Valu
68、es Only (3c); and the use of the Weighted Average of the three severity levels as shown below</p><p> The summary of statistics found for all the combinations is given in tables 3.3.3 through 3.3.5.</p&g
69、t;<p> Table 3.3.3. Statistical summary for validation of the TC Model with LTPP sites β = 1.0. </p><p><b> 漢文翻譯</b></p><p><b> 注:</b></p><p&g
70、t; D1, m =斷裂系數(shù)。</p><p> T =加載時(shí)間(秒)。</p><p> 相關(guān)于D1斷裂控制參量是:</p><p><b> (3.3.56)</b></p><p><b> 注:</b></p><p> T= 測試溫度()(i.e
71、., 0, -10, 和 –20 )</p><p><b> = 空隙(%)</b></p><p> VFA = 壓實(shí)瀝青混合料中的瀝青飽和度(%) =</p><p><b> =有效粘結(jié)劑含量</b></p><p> 攔截粘合劑粘度-RTFO溫度關(guān)系條件</p>&
72、lt;p> 對(duì)于m參數(shù)、相關(guān)使用的是:</p><p><b> (3.3.57)</b></p><p><b> 注:</b></p><p> T= 測試溫度()(i.e., 0, -10, and –20 )</p><p><b> = 空隙(%)</b
73、></p><p> VFA = 壓實(shí)瀝青混合料中的瀝青飽和度(%)</p><p> 滲透的溫度調(diào)到77華攝氏度 =</p><p> A =攔截粘合劑粘度-溫度關(guān)系</p><p> VTS =粘合劑粘度斜坡-溫度關(guān)系</p><p> m值的結(jié)果被設(shè)定一個(gè)下限為0.01。</p>
74、;<p> 所有三個(gè)步驟的數(shù)據(jù)輸入,引導(dǎo)程序需要時(shí)的設(shè)計(jì)抗拉強(qiáng)度。步驟1和2需要實(shí)際的測試數(shù)據(jù)為抗拉強(qiáng)度,然而步驟3建立在典型值的瀝青混合料性能的基礎(chǔ)上,類似于蠕變?nèi)崃恐怠?lt;/p><p> 對(duì)步驟1和2,強(qiáng)度試驗(yàn)進(jìn)行了同樣的測試標(biāo)本建立在被使用于100秒的蠕變?cè)囼?yàn)中。蠕變?cè)囼?yàn)完成后,破壞是在使用每分鐘51毫米的負(fù)荷率。拉伸強(qiáng)度說明的是三個(gè)值的平均值。</p><p>
75、 在推薦的檢測擬定中,一個(gè)特殊的程序是實(shí)現(xiàn)負(fù)載在間接拉伸測試中確定“破壞荷載”。這又是一個(gè)重大的改動(dòng),因?yàn)槠茐暮奢d比已經(jīng)發(fā)現(xiàn)的樣本的最大荷載小。</p><p> 因此,一旦失敗時(shí)(采用撓度測量的方法不同),破壞荷載的定義和負(fù)荷拉伸強(qiáng)度計(jì)算:</p><p><b> (3.3.58)</b></p><p><b> 注:&l
76、t;/b></p><p><b> 破壞荷載</b></p><p> 修正系數(shù)(上文所定義的)。</p><p><b> t = 試樣厚度。</b></p><p><b> D =標(biāo)本直徑</b></p><p> 對(duì)于步驟3的分
77、析,拉伸強(qiáng)度在-10℃時(shí)混合物的混合特性與蠕變?nèi)崃繑嗔褏?shù)屬性。最好的指標(biāo)是空氣空隙,空隙充滿了瀝青含量,滲透在77華攝氏度,和一個(gè)攔截粘結(jié)劑粘度溫度關(guān)系的RTFO條件。下面的相關(guān)分析:</p><p> 其中,拉伸強(qiáng)度(ST)是在PSI(磅/平方英寸)給出的。方程的結(jié)果被設(shè)置為一個(gè)下限是100磅。</p><p> 基于以上相關(guān)步驟3的分析,幾種粘合劑在這種分析中使用中蠕變?nèi)崃磕J(rèn)值
78、和抗拉強(qiáng)度的幾個(gè)粘合劑進(jìn)行的計(jì)算??偨Y(jié)這個(gè)結(jié)果是在附錄HH。</p><p> 其他所需投入的測試時(shí)間,瀝青面層厚度的,和系數(shù)熱收縮。用于熱收縮系數(shù),該計(jì)劃有2種方法。在一個(gè)實(shí)例中,瀝青混合料VMA,熱收縮和聚合瀝青熱收縮值是需要估計(jì)的混合熱系數(shù)收縮或使用者可以直接輸入值的混合熱系數(shù)。</p><p> 步驟2:發(fā)展主蠕變?nèi)崃壳€</p><p> 增強(qiáng)數(shù)據(jù)分
79、析技術(shù)(通過新的碩士課程都聲稱提供準(zhǔn)確的時(shí)間 - 溫度變化(AT)和蠕變?nèi)崃糠夏P偷慕y(tǒng)計(jì)擬合技術(shù)通過Prony算法和動(dòng)力模型的形式,以及發(fā)展的蠕變?nèi)崃恐髑€(CCMC)。</p><p> 在這種分析中,一個(gè)特殊的數(shù)據(jù)“微調(diào)”技術(shù)是用來提供最好的評(píng)估該混合物的所反應(yīng)的參數(shù)。如果三個(gè)標(biāo)本都測,各有測量的兩個(gè)面,共六次(遵守)與時(shí)間曲線可以發(fā)展的。修改方法建議去掉極高和極低讀數(shù),然后利用平均剩余的四個(gè)測量反應(yīng)持續(xù)
80、時(shí)間。 </p><p> 最后,新的程序不再需要粘結(jié)劑硬化延長混合物蠕變?nèi)崃吭偌虞d的時(shí)間做出對(duì)CCMC的結(jié)果。該結(jié)果CCMC的分析方法是的一系列定義:</p><p><b> (3.3.60)</b></p><p><b> ?。?.3.61)</b>
81、;</p><p><b> 其中:</b></p><p><b> 減少時(shí)間</b></p><p><b> t = 切實(shí)時(shí)間</b></p><p><b> 溫度變化的因素。</b></p><p><b&g
82、t; 蠕變?nèi)崃靠s短時(shí)間</b></p><p> Prony級(jí)數(shù)參數(shù)。</p><p> 主蠕變法遵從性曲線的結(jié)果也是適合動(dòng)力模型的定義 : </p><p><b> (3.3.62)</b></p><p> 確定一種額外的模型的原因是由于功率斜坡,參數(shù)、 m、 最終用于計(jì)算幾個(gè)裂縫 (裂紋擴(kuò)
83、展),斷裂模型中的參數(shù)。</p><p> 第 3 步: 預(yù)測的熱應(yīng)力</p><p> 使用粘彈性轉(zhuǎn)型理論,柔量,D(t),能涉及到松弛模量、 Er、 瀝青混合料。加上此參數(shù)知識(shí)從 EICM 模型中,獲得的溫度數(shù)據(jù)允許的預(yù)測在任何給定的深度和瀝青層內(nèi)的熱應(yīng)力。</p><p> 通過改造蠕變?nèi)崃揩@得松弛模量的功能函數(shù)。松弛模量由一種廣義的麥克斯韋模型和由 P
84、rony 系列關(guān)系:</p><p><b> ?。?.3.63)</b></p><p><b> 注:</b></p><p> 時(shí)間減少時(shí)的松弛模量</p><p> 主松弛模量曲線 Prony 系列參數(shù)彈簧常數(shù)(或模量和麥克斯韋的松弛時(shí)間元素)。</p><p>
85、; 松弛模量功能,讓計(jì)算在路面的熱應(yīng)力,根據(jù)以下的本構(gòu)方程:</p><p><b> ?。?.3.64)</b></p><p><b> 注:</b></p><p><b> 時(shí)間減少時(shí)的應(yīng)力</b></p><p><b> 松弛模量()時(shí)間</
86、b></p><p><b> 持續(xù)時(shí)間</b></p><p><b> 線性熱收縮系數(shù)。</b></p><p><b> 持續(xù)時(shí)間的路面溫度</b></p><p><b> 路面溫度()</b></p><p>
87、;<b> 積分變量。</b></p><p> 第 4 步: 增長的熱裂紋長度計(jì)算</p><p> 斷裂力學(xué) (巴黎的法律) 用于計(jì)算熱裂紋的增長瀝青層內(nèi)的裂紋長度。這被通過驗(yàn)證的應(yīng)力強(qiáng)度因子、 K,以及 A 和 n 這些斷裂參數(shù)由瀝青混合料的蠕變?nèi)崃亢屠鞆?qiáng)度得出。</p><p> TCMODEL用于預(yù)測在預(yù)期的橫向開裂的量路面
88、系統(tǒng)。正如前面指出的氣候性的輸入和粘彈性性能(柔量-松弛模量) 計(jì)算的熱應(yīng)力,在任何允許給定的時(shí)間和瀝青層內(nèi)的位置。一旦完成了,斷裂力學(xué),根據(jù)巴黎的法律,用于計(jì)算材料的應(yīng)力強(qiáng)度和斷裂這種屬性。</p><p> 應(yīng)力強(qiáng)度參數(shù),K,擬訂了開發(fā)基于有限元法的理論研究和結(jié)果的從這種分析,已確定可以估計(jì) K,從:</p><p><b> (3.3.65)</b><
89、/p><p><b> 注:</b></p><p><b> K=應(yīng)力強(qiáng)度因子。</b></p><p> 從路面響應(yīng)模型在裂紋尖端深度的遠(yuǎn)場應(yīng)力。</p><p> 當(dāng)前裂紋長度,英尺。</p><p> 熱斷裂模型中使用的裂紋傳播模型是:</p>&
90、lt;p><b> (3.3.66)</b></p><p><b> 注:</b></p><p> 在循環(huán)冷卻的過程中裂縫深度變化。</p><p> 循環(huán)冷卻過程中的應(yīng)力強(qiáng)度因素的變化。</p><p> A,n=瀝青混合料的斷裂參數(shù)。</p><p>
91、 用于評(píng)估 A 和 n 參數(shù)的方法依據(jù),一部分是,以前的工作 (14,15,16)?;仡櫩梢员硎局魅渥?nèi)崃壳€的屈服的冪函數(shù):</p><p><b> (3.3.67)</b></p><p> M 值,通過柔量曲線所得的用于 n 斷裂參數(shù)計(jì)算公式:</p><p><b> ?。?.3.68)</b></p
92、><p> 知道n值,斷裂參數(shù)A 由下列計(jì)算的公式算出:</p><p> (3.3.69) </p><p><b> 注:</b></p><p> E=混合剛度,磅(力)/平方英寸</p><p> 沒有損壞時(shí)的混合料拉伸強(qiáng)度,磅(力)/平方英寸</p><
93、;p><b> 校準(zhǔn)參數(shù)。</b></p><p> 第 5 步: 熱的長度裂縫計(jì)算</p><p> 從瀝青混合料層厚度比裂縫深度比例和開裂的百分比假設(shè)關(guān)系的概率分布預(yù)測 (表示為路面長度為 500 英尺長度產(chǎn)生的熱橫向裂縫) 的開裂的程度</p><p> 開裂數(shù)量的(裂紋頻率) 計(jì)算的裂縫深度的關(guān)系是由下面的表達(dá)式來表示:&
94、lt;/p><p><b> (3.3.70)</b></p><p><b> (3.3.71) </b></p><p><b> 注:</b></p><p> 觀測到的熱裂解的金額。</p><p> 通過現(xiàn)場標(biāo)定確定回歸系數(shù)。</p
95、><p> 標(biāo)準(zhǔn)正態(tài)分布在 () 進(jìn)行計(jì)算。</p><p> 在路面裂縫深度的log()的標(biāo)準(zhǔn)偏差。</p><p><b> C=裂紋深度</b></p><p> 瀝青層的厚度。 </p><p><b> 熱裂解模型假設(shè)&l
96、t;/b></p><p> 熱裂解的最大值在方法中的假定是:</p><p><b> 路面的長度。</b></p><p> 這將轉(zhuǎn)化為一個(gè)裂縫 (全 12 英尺車道寬度) 每 15 英尺長度路面的裂縫間距。雖然這是假定值的最大值; 模型不能預(yù)測此最大值的 50%以上,因?yàn)榘l(fā)生故障時(shí)平均裂紋深度等于 (達(dá)到) 瀝青層的厚度。&l
97、t;/p><p> 熱裂解可靠性標(biāo)定的熱裂化模型是在三個(gè)層次結(jié)構(gòu)級(jí)別的分析完成的。四十二個(gè)公共交通交匯處路段路面被用于校準(zhǔn): 22 GPS 部分從LTPP 數(shù)據(jù)庫 、 14 節(jié)從加拿大 C 分級(jí)程序、 一條從皮奧里亞、 IL,和5個(gè) MnROAD 月 5 日明尼蘇達(dá)州DOT。附錄 HH 中找到詳細(xì)信息和各部分的位置。</p><p> 溫度裂縫預(yù)測的可靠性評(píng)估中兩種不同方式: 通過在設(shè)計(jì)期
98、間,使用實(shí)際的歷史性路面溫度和使用基于歷史記錄的平均估計(jì)的溫度。預(yù)測熱裂解與比較測量熱裂解和預(yù)測的錯(cuò)誤發(fā)現(xiàn)。</p><p> 級(jí)別的錯(cuò)誤分析圖 3.3.25 和 3.3.26 所示。第一和第二次的方法被發(fā)現(xiàn)錯(cuò)誤平均預(yù)測分別是 –9.0 英尺 和 16.2 英尺。這樣的比較說明了功效和設(shè)計(jì)期間的重要性是輸入實(shí)際的歷史氣候數(shù)據(jù)而不是估計(jì)的數(shù)據(jù)。</p><p><b> 圖 3
99、.3.25 </b></p><p> 步驟 2 的分析,得到的預(yù)測熱裂化值使用 1 級(jí)所述的相同的分析。 預(yù)測和測量的熱裂解比較和預(yù)測的誤差以的數(shù)字的形式顯示在 3.3.27 和 3.3.28 表。第一次和第二次方法中發(fā)現(xiàn)平均預(yù)測錯(cuò)誤分別是 30.1 英尺 和 49.7 英尺。錯(cuò)誤的差異突出了擁有準(zhǔn)確和實(shí)際輸入的路面溫度的重要性。</p><p> 36 LTPP 節(jié) (
100、156建議)收集的數(shù)據(jù)和級(jí)別 3 分析的數(shù)據(jù)的使用是十二個(gè)不同的組合進(jìn)行:對(duì)巴黎法律上的斷裂參數(shù) A的系數(shù)的三個(gè)值(β = 1.0,3.0 版和 5.0),和確定測量熱裂解的四種不同方法:低、 中級(jí)和高嚴(yán)重性開裂 (3a) ; 中級(jí)和 高嚴(yán)重性的總和 (3b) ;高值只(3 c) ;和三個(gè)如下所示 (3d)的嚴(yán)重性級(jí)別值的加權(quán)平均的使用:</p><p><b> ?。?.3.72)</b>
101、</p><p> 所有組合的統(tǒng)計(jì)摘要表3.3.5 -3.3.3 中提供。</p><p> 3.3.3 表。與 LTPP TC 模型驗(yàn)證中的統(tǒng)計(jì)摘要(β = 1.0)。</p><p> 3.3.4 表。與 LTPP TC 模型驗(yàn)證中的統(tǒng)計(jì)摘要網(wǎng)站 β = 3.03.3.4 表。與 LTPP TC 模型驗(yàn)證中的統(tǒng)計(jì)摘要 β = 3.0.</p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
評(píng)論
0/150
提交評(píng)論