2023年全國(guó)碩士研究生考試考研英語(yǔ)一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  中文3680字</b></p><p><b>  窗體頂端</b></p><p><b>  外文翻譯</b></p><p>  1.1 Earthquake Background</p><p>  Earthquake is a hig

2、h risk natural disaster which costs injuries and casualties as well as the damages to the infrastructures. It has an ability to deform the earth surfaces thus causing destructions to buildings on it</p><p> 

3、 1.2 Earthquake Phenomenon</p><p>  Earthquake happens when there is an earth crust movement due to folding crust. When the earthquake occurs, the soil and crust move randomly to directions. Earthquake happ

4、ens actually numerous times in a day but the earthquake that affects the most and has great magnitude is seldom to occur, nevertheless once in several years.</p><p>  According to the tectonic plate theory,

5、the earth surface is divided into several rigid crusts. They move in such ways, colliding or apart from each other. When the crusts collide, one of them will subdue under one another and the sliding crusts will generate

6、energy. This movement will take years and peoples on it will never aware of this activity and it actually takes only several centimeters in a year. Each time the couple crusts move and slip with each other, it increase a

7、nd accumulate the en</p><p>  The earthquake magnitude is measured in Richter Scale. A great earthquake is categorized as an earthquake with magnitude of 5.0 and above which surely causes damage to structure

8、s.</p><p>  The point where the earthquake origins is called focus or hypocenter which determined by seismic assessment. Earthquake starts with a small shaking followed by a sudden increase of shaking intens

9、ity. The small shake is called foreshock, while the great shaking is called mainshock and the rest is called aftershock. A great earthquake usually not done with only one shake, the shakings will remain to happen but the

10、re will only the magnitude is decreasing. The starting is called mainshock but the re</p><p>  1.3 Earthquake Waves</p><p>  The earthquake is a result of an elastic waves. There are 3 types of

11、 earthquake waves. Two of them are moving within the rock, while another one moving through earth surface. The P-wave is the fastest wave among the three. It is corresponded as a motion of push and pull and can travel th

12、rough solid rock or water of the ocean.</p><p>  The S-wave is slower than the P-wave. It shears the rock sideways to the travel direction. It can not travel through the water ocean. While the third wave is

13、the Surface Wave. Surface wave is divided into two types of minor waves. The first is the Love Wave while the second is Rayleigh Wave. It is similar to the S-wave but with no vertical movement. It moves in horizontal pla

14、ne with an angle to he travel direction. While the Rayleigh Wave is a wave that travels in both horizontal and vertical di</p><p>  1.4 Effects of Earthquake</p><p>  Earthquake can cause prope

15、rties damage and casualties as well as earth deformations and damaging structures that get in its way. Earthquakes that occur below sea level and have large vertical displacements can give rise to tsunamis, either as a d

16、irect result of the deformation of the sea bed due to the earthquake or as a result of submarine landslides directly or indirectly triggered by the quake (Bolt, 1978).</p><p>  Earthquake force is acting lik

17、e a pull and push action resulting the building to receive random excitation. The excitation will transfer force from the foundation to the tip of the building. The sway of the building increases as the height increases.

18、 The top section of the building will experience the most swinging force rather than the bottom part</p><p>  1.5 Problem Statement</p><p>  In an earthquake event, the most affected things wil

19、l be the civil structure and buildings. The lost will cost millions in monies as well as casualties. In Malaysia, there are no such things that had been done to overcome the unexpected disaster. In the current building p

20、ractice, no earthquake load factor taken into account into the design consideration. Earthquake impact, this study is imperative as a precaution and to prove how important an earthquake design code implemented in Malaysi

21、a’s buil</p><p>  1.6 Objectives</p><p>  The objectives of this study are:</p><p>  1. To study the design capacity of the bridge.</p><p>  2. To determine the b

22、ridge responses (deformation, shear and moment) under various intensity of earthquake.</p><p>  3. To identify the Damage Index of the bridge.</p><p>  4. To identify the most critical part

23、of the bridge while transmitting earthquake loading.</p><p>  5. To model the bridge structure as close as possible to its actual state so that its behavior can be studied.</p><p>  6. To id

24、entify the safer structural design practice to be implemented in bridge structure, in the future.</p><p>  2.1 Analysis</p><p>  The evolution of seismic analyses in earthquake engineering has

25、followed closely the developments in dynamic structural analysis as a whole. Numerous kind of research done by research team, academic institutes and distinguished researchers regarding to the earthquake induced structur

26、e. All the studies are concern toward finding the best solution to reduce the impact and damage to the structure.Malaysia is a region which free from the seismic activity and has been regarded as a stable area. But t<

27、/p><p>  2.2 Concrete Failure</p><p>  Concrete failure always associated with the air and moisture factor. They can lead the concrete to deteriorate in problems like:</p><p><b>

28、;  i.Cracks</b></p><p>  ii.Spalling and scaling of concrete due to expansion of steel rebar which transmits tension to</p><p><b>  concrete.</b></p><p>  iii.A

29、brasion of the steel rebar caused by concrete inadequacies surrounding the section and exposure </p><p>  to crack attack.</p><p>  iv.Inadequate concrete strength.</p><p>  2.3Na

30、tural Disaster Problem</p><p>  The unexpected natural disaster can cause the bridge structure to fail and collapse. The disaster can lead to problems like below (Kirillov et al., 1962):</p><p>

31、  i.Settling of the soils surround the structure.</p><p>  ii.Slope failure.</p><p>  iii.Lateral crack on superstructure’s surface.</p><p>  iv.Cracks of retaining wall and set

32、tlement of the support.</p><p>  Numerous actions can be taken to overcome this problem. There are four actions to be considered according to Parry, 1976. Those are:</p><p>  i.Use more and big

33、ger bolts to carry the load. </p><p>  ii.Increase the retaining wall strength.</p><p>  iii.Emplace shear or concrete blocks between the girder sections.</p><p>  iv.Increase co

34、ncrete strength which located in the end of the bridge span.</p><p>  2.4 Analysis steps</p><p>  There are many techniques used in structural dynamic analysis. One of the essential parts to b

35、e focused in is the analysis and the design of the structure to withstand the ground acceleration from the earthquake.</p><p>  Non-linear analysis is used in this study. IDARC 2D is chosen as the non-linea

36、r dynamic program to be used to analyze dynamic characteristic of the structure when it failed. While the SAP2000 will analyze the bridge by Response Spectrum analysis, comparing its shear and moment under earthquake loa

37、ding with the actual design capacity.</p><p>  In this study, the inelastic analysis is considering a bridge where an identified box girder bridge will be accounted and analyze with increasing intensity seis

38、mic accelerations, to the extent when the bridglastic characteristice shows the ine.</p><p>  2.5 Time History Analysis</p><p>  The Time History analysis will be carried out by the IDARC progr

39、am analysis. Time History is a set of graphical data that shows the intensity of the earthquake and contains the acceleration, g of the earthquake event to the period of the event.</p><p>  2.6 IDARC 2D – A

40、 Program for Inelastic Structural Analysis.</p><p>  Developed at the State University of New York at Buffalo, IDARC was first introduced in 1987 for the purpose of analyzing earthquake damage in multistory,

41、 reinforced concrete buildings. Since then, numerous enhancements have been added, including the ability to analyze a wide variety of structures, structural materials, and, most recently, structural damping devices.</

42、p><p>  The main functions of the program consisted of three parts (Park et al., 1987):</p><p>  ?System identification: static analysis to determine component properties and the ultimate failure

43、mode of the building.</p><p>  ?Dynamic response analysis: step by step inelastic dynamic analysis.</p><p>  ?Substructure analysis and damage analysis: analysis of selected substructures, and

44、 comprehensive damage evaluation.</p><p>  The Control Data of IDARC Input Sheet</p><p>  3.1 Introduction</p><p>  Analysis of the seismic impact is carried out on the concrete bo

45、x girder type bridge at the ‘Bridge Across Sungai Perak” at Federal Route 1 Project, Section III. The bridge is a part of Projek Lebuhraya Utara-Selatan (PLUS) route. The structure is spanning at 360 meters connecting Ip

46、oh and Kuala Kangsar areas. The bridge construction completed on May of 1979 and still service for the traffic until now。</p><p>  3.2 Bridge Structure</p><p>  The structure that is being cons

47、idered in the study is the superstructure of the bridge itself, like the span girder, and the column. The structure is made of four spans prestressed concrete box girder with the high yield strength steel tendon. It is b

48、eing supported by four piers and two abutments.</p><p>  There are four straight spans in the phase with two different lengths. The first and the fifth span is 51.82 meters length while the other three in th

49、e middle is 85.34 meters respectively. The pier is the single type column with the dimension of 8000mm x1500mm.</p><p>  3.3 Computer Aided Analysis Program</p><p>  3.3.1 IDARC 2D</p>

50、<p>  IDARC 2D program is a two dimensional analysis program to study non-linear structural response in which various aspects of concrete, steel and other materials behavior can be modeled, tested and improved upon.

51、 Program development and enhancements have been primarily to link experimental research and analytical developments.</p><p>  The program was developed at the University at Buffalo of New York State back in

52、1989 and keep on improving until the latest version labeled as IDARC 2D 6.0 that has been used in this bridge nonlinear analysis.The original program released included the following structural element types (Park et al.,

53、 1987):</p><p>  1. Column Elements</p><p>  2. Beam Elements</p><p>  3. Shear Wall Elements</p><p>  4. Edge Column Elements</p><p>  5. Transv

54、erse Beam Elements</p><p>  Column element is modeled considering inelastic flexural deformation, elastic shear and axial deformations. Beam element is modeled by a nonlinear flexural stiffness model with li

55、near elastic shear deformations considered. Shear wall include inelastic shear and bending deformations, with an uncoupled elastic axial component. Edge column element is introduced considering only inelastic axial defor

56、mations. Transverse beam element, that has an effect on the rotational deformation of the shear walls</p><p>  The original release of the program consisted of three parts (Park et al., 1987):</p><

57、;p>  ?System identification: static analysis to determine component properties and the ultimate failure mode of the building.</p><p>  ?Dynamic response analysis: step by step inelastic dynamic analysis

58、.</p><p>  ?Substructure analysis and damage analysis: analysis of selected substructures, and comprehensive damage evaluation.</p><p>  The IDARC 2D can be regarded as a simple yet reliable pr

59、ogram for the purpose of studying the non-linear response of a structure. It can show where and what type of damage that the structure is experiencing. The damage states that shown by the IDARC output sheet are as below:

60、</p><p>  1.Cracking (for concrete) or initial yield (for steel.)</p><p>  2.Plastic hinged developed</p><p>  3.Local failure (exceed criteria)</p><p>  4.Initial

61、shear crack</p><p>  5.Shear failure</p><p>  Besides, the IDARC will calculate and show the damage index of the analyzed structure. The IDARC works with the data of excitation from the earthqu

62、ake event; like an earthquake time history.</p><p>  3.3.2 SAP2000</p><p>  SAP2000 Nonlinear is a fully graphical Windows program. Different from the late version SAP90, this new non-linear an

63、alysis program no longer working in Fortran language. In SAP2000, modeling process, analysis and result displays are all performed in graphical user interface.</p><p>  In SAP2000, the dimension, size and pr

64、operties of the bridge will be defined. The unit weight, moment and torsion will be calculated automatically by the SAP2000 itself. But the compressive strength, fcu and steel bar yield strength, fy have to be defined. T

65、he input data and model are enclosed in the Appendix.</p><p>  3.4 Seismic Load</p><p>  The El-Centro earthquake event in May 1940 with the magnitude of 7.1 Richter Scale is chosen for being t

66、he dynamic load in this study. Appendix shows the Time- History and Response Spectra data, which is taken from the earthquake event. The highest ground acceleration recorded was 0.95g, where g is the gravity acceleration

67、 (9.81 m/s2). This study concerns on the lower excitation scales such as 0.02g up to 1.0g.</p><p>  3.5 IDARC Analysis</p><p>  Analysis of Time History will be run on the structure with two an

68、d three mode. The bridge capacity will be determined, seeing whether the bridge can withstand theearthquake load from the El-Centro Time History data. If the structure does fail or damage, it will be presented in IDARC o

69、utput control as well as the damaged parts. Analysis will also be done to compare the result of various earthquake excitations. Ground acceleration that will be induced varies from 0.02g to 1.0g.</p><p>  3.

70、6 SAP2000 Analysis</p><p>  SAP200 analysis will be the Response Spectrum analysis. The analysis is looking to the structure response under the El-Centro Response Spectrum. Response Spectrum is the maximum

71、response of a system excited at its base and expressed in terms of natural frequency, ω . See Appendix for the El Centro Time History Data and Response Spectrum.Response spectrum analysis is performed to verify whether t

72、he girder and column design capacity are adequate.</p><p>  3.7 Model</p><p>  This bridge is modeled as two dimensional frames for the IDARC analysis. Each bridge member is subdivided to sever

73、al nodes so the structure model is close enough to its actual behaviors, thus enhances the accuracy of the structure response.</p><p>  The model consists of five spans with two different lengths. For each b

74、ridge end there is one degree of freedom which allows the end move freely in horizontal axis (roller support). This five span structure is supported by four piers which restraints fix at</p><p>  bases. Damp

75、ing ratio is taken as 5% for the whole structure ( ζ = 0.05).</p><p><b>  外文翻譯</b></p><p><b>  1.1地震背景</b></p><p>  地震是一種高風(fēng)險(xiǎn)的自然災(zāi)害花費(fèi)傷害和傷亡以及損害賠償?shù)幕A(chǔ)設(shè)施。它有變形從而地球表

76、面造成的殘害在其上的建筑物的能力。</p><p>  1.2地震現(xiàn)象地震發(fā)生時(shí),有一個(gè)地殼運(yùn)動(dòng),由于地殼折疊。當(dāng)?shù)卣鸢l(fā)生時(shí),土壤和地殼移動(dòng)到任意方向。地震實(shí)際發(fā)生無數(shù)次在一天,但影響最具有規(guī)模巨大??的地震很少發(fā)生,但一旦在幾年。根據(jù)板塊理論,地球表面被分成幾個(gè)剛性結(jié)殼。他們移動(dòng)以這樣的方式,碰撞或彼此分開。當(dāng)痂皮相撞,其中一人將征服彼此下,滑動(dòng)痂皮會(huì)產(chǎn)生能量。這一運(yùn)動(dòng)將需要數(shù)年時(shí)間和人民的永遠(yuǎn)不會(huì)知道

77、本次活動(dòng),它實(shí)際上只需要幾厘米的一年。每次夫婦結(jié)殼移動(dòng)和防滑相互搭配,它增加和積累能量的物質(zhì),它周圍如巖石。最后,能源本身會(huì)超過巖石強(qiáng)度,從而使巖石移動(dòng)或爆炸。爆炸的巖石會(huì)導(dǎo)致以后的地震意味著一旦地震發(fā)生時(shí),部隊(duì)正在消退。地震震級(jí)是衡量里氏震級(jí)。大地震被歸類為地震的5.0級(jí)及以上這肯定造成損害的結(jié)構(gòu)。</p><p><b>  窗體頂端</b></p><p> 

78、 其中,地震起源被稱為焦點(diǎn)或震源它通過抗震鑒定標(biāo)準(zhǔn)確定的點(diǎn)。地震開始于一個(gè)小的晃動(dòng)隨后振蕩強(qiáng)度的突然增加。小抖動(dòng)被稱為前震,而巨大的震動(dòng)被稱為主震,其余被稱為余震。一個(gè)偉大的地震通常不會(huì)只有一個(gè)搖完成后,會(huì)的震撼仍有發(fā)生,但只會(huì)有幅度的下降。出發(fā)被稱為主震但其余稱為余震。</p><p>  1.3地震波 地震是彈性波的結(jié)果。有3種類型的地震波。其中兩個(gè)是在巖石內(nèi)移動(dòng),而另一個(gè)人通過地球表面移動(dòng)。 P波

79、是最快的波三者之間。它相當(dāng)于為推的運(yùn)動(dòng)和拉動(dòng),并可以通過堅(jiān)硬的巖石海洋或水傳播。</p><p>  S波比縱波慢。它剪巖石側(cè)身于行進(jìn)方向。它不能穿過水海洋行進(jìn)。而第三次浪潮是面波。表面波被分為兩種類型次要波。首先是愛浪,而第二種是瑞利波。它類似于S波,但沒有垂直移動(dòng)。它在移動(dòng)水平面有一個(gè)角度,他的行進(jìn)方向。而瑞利波是在行進(jìn)水平和垂直方向的波。</p><p>  1.4地震影響

80、地震可能會(huì)導(dǎo)致性能損失和人員傷亡,以及地球變形,并且得到它的方式破壞的結(jié)構(gòu)。發(fā)生在海平面以下,并有較大的垂直位移可以引起海嘯,無論是作為海床變形的直接結(jié)果因地震或海底滑坡由地震直接或間接引起的結(jié)果(博爾特地震, 1978年)。 地震力作用等引起的建筑獲得隨機(jī)激勵(lì)一個(gè)推拉動(dòng)作。激勵(lì)將從基礎(chǔ)力傳遞到建筑物的小費(fèi)。建筑物的搖擺增加隨著高度增加而增加。建筑物的頂部部分將經(jīng)歷最擺動(dòng)力而不是底部。</p><p> 

81、 1.5問題陳述 在地震事件中,受影響最大的事情將是土木結(jié)構(gòu)和建筑物。失去的將耗資數(shù)百萬美元的資金以及人員傷亡。在馬來西亞,有一些已經(jīng)做了克服飛來橫禍沒有這樣的事情。在目前的建筑實(shí)踐中,沒有地震荷載因素考慮到設(shè)計(jì)中考慮。地震的影響,這項(xiàng)研究是必要的,作為預(yù)防措施,并證明地震設(shè)計(jì)規(guī)范在馬來西亞的建筑和土木結(jié)構(gòu)多么的重要實(shí)施做法。</p><p>  1.6目標(biāo) 這項(xiàng)研究的目標(biāo)是:1.研究的橋梁的設(shè)計(jì)

82、容量。2.確定橋響應(yīng)(變形,剪力和彎矩)根據(jù)地震烈度各種。3.要確定橋梁的損傷指標(biāo)。4.要確定橋梁的最關(guān)鍵的部分,同時(shí)傳送地震荷載。5.橋結(jié)構(gòu)盡可能接近建模其實(shí)際狀態(tài),使得它的行為,可以研究。6.為了確定更安全的結(jié)構(gòu)設(shè)計(jì)實(shí)踐中橋結(jié)構(gòu)來實(shí)現(xiàn),在未來。</p><p>  2.1分析 地震分析地震工程的演變密切關(guān)注動(dòng)態(tài)結(jié)構(gòu)分析作為一個(gè)整體的發(fā)展。眾多方面的研究由研究團(tuán)隊(duì),學(xué)術(shù)機(jī)構(gòu)和有關(guān)地震引起的結(jié)

83、構(gòu)杰出的研究人員完成的。所有的研究都是關(guān)注朝向?qū)ふ易罴呀鉀Q方案,以減小沖擊和破壞的結(jié)構(gòu)。檳城大橋,馬來西亞2.2地震和抗震設(shè)計(jì)標(biāo)準(zhǔn)。馬來西亞是從地震活動(dòng)其中釋放和已被視為穩(wěn)定的區(qū)域的區(qū)域。但也有重大缺陷的數(shù)量已經(jīng)在半島認(rèn)可。</p><p>  2.2混凝土破壞 具體的故障總是與空氣和水分的因素有關(guān)。他們可能會(huì)導(dǎo)致混凝土在這樣的問題惡化: 1.裂縫 2.剝落和混凝土的比例因膨脹鋼螺紋鋼其發(fā)送張力混凝

84、土。 3.磨損造成周邊部分和曝光破解攻擊的具體不足之處鋼筋的。 4.不足的混凝土強(qiáng)度。2.3自然災(zāi)害問題 在突發(fā)性自然災(zāi)害可能會(huì)導(dǎo)致橋梁結(jié)構(gòu)失敗和崩潰。這場(chǎng)災(zāi)難可能會(huì)導(dǎo)致類似下面的問題(基里洛夫等人,1962年。):1.土壤的沉降包圍的結(jié)構(gòu)。 </p><p>  2.邊坡失穩(wěn)。3.水平裂縫對(duì)結(jié)構(gòu)的表面。4.擋土墻和結(jié)算支持的裂縫。</p><p>  許多可以采取

85、行動(dòng)來克服這個(gè)問題。有根據(jù)帕里,1976年被認(rèn)為是四種操作這些是:1.使用更多更大的螺栓進(jìn)行負(fù)載。 </p><p>  增加擋土墻強(qiáng)度。3.布設(shè)在梁段之間的剪切或混凝土塊。4.增加混凝土強(qiáng)度,這位于橋跨的末端。</p><p>  2.4 分析步驟 橋結(jié)構(gòu)分析由兩個(gè)主要的分析它們是線性的和非線性分析。這項(xiàng)研究的重點(diǎn)是看所識(shí)別橋僅非線性響應(yīng)。該分析包括在非線性的時(shí)程分析與響應(yīng)

86、頻譜分析。時(shí)間歷史和反應(yīng)譜分析將在IDARC運(yùn)行2D分別SAP2000程序。2.5時(shí)程分析 時(shí)程分析將由IDARC程序分析進(jìn)行。時(shí)間歷史是一組圖形數(shù)據(jù)的顯示地震的強(qiáng)度,并包含加速度地震事件,g至事件的期間。</p><p>  2.6 IDARC 2D - 一個(gè)程序的非彈性結(jié)構(gòu)分析 在發(fā)達(dá)的紐約州立大學(xué)布法羅分校,IDARC最早是在1987年推出的用于分析多層地震破壞的目的,鋼筋混凝土建筑物。從

87、那時(shí)起,許多增強(qiáng)已被添加,包括分析多種結(jié)構(gòu),結(jié)構(gòu)材料的能力,并且,最近,結(jié)構(gòu)阻尼裝置。 該方案的主要功能分為三個(gè)部分(Park等人,1987年):?系統(tǒng)識(shí)別:靜態(tài)分析,以確定組分的屬性和該建筑物的最終故障模式。?動(dòng)態(tài)響應(yīng)分析:步步彈性動(dòng)態(tài)分析。?子結(jié)構(gòu)分析和損壞分析:所選子結(jié)構(gòu)的分析,綜合和評(píng)價(jià)的損壞??刂茢?shù)據(jù)設(shè)置參數(shù)</p><p>  3.1簡(jiǎn)介 地震影響的分析是對(duì)的“大橋橫跨霹靂州雙

88、溪混凝土箱梁式橋梁”在聯(lián)邦中線一期工程,第三部分。這座橋是Projek Lebuhraya烏達(dá)拉-SELATAN(PLUS)路線的一部分。該結(jié)構(gòu)在跨越360米連接怡保及瓜拉江沙區(qū)。橋梁建設(shè)完成于1979年的五月,仍然服務(wù)于交通直到現(xiàn)在。3.2橋梁結(jié)構(gòu) 正在考慮在研究的結(jié)構(gòu)是橋本身,如跨梁,并且該列的上層建筑。該結(jié)構(gòu)由四個(gè)跨預(yù)應(yīng)力混凝土箱梁的高屈服強(qiáng)度鋼筋。它正在由四個(gè)橋墩和兩個(gè)支座支承。 有四個(gè)直的跨距中的相位與兩個(gè)不

89、同的長(zhǎng)度。第一和第五跨度51.82米長(zhǎng)度分別85.34米而在中間的其他三個(gè)是。該碼頭是與8000毫米尺寸的單一類型x列1500毫米。</p><p>  3.3計(jì)算機(jī)輔助分析程序3.3.1 IDARC 2D IDARC 2D節(jié)目是一個(gè)兩維分析程序來研究,其中混凝土,鋼等材料行為的各個(gè)方面可以被建模,測(cè)試和經(jīng)改進(jìn)的非線性結(jié)構(gòu)響應(yīng)。程序開發(fā)和增強(qiáng)已經(jīng)主要鏈接實(shí)驗(yàn)研究和分析的發(fā)展。該方案是在大學(xué)紐約州布法羅的

90、早在1989年制定并不斷完善,直到打成IDARC 2D 6.0已在這座橋梁非線性分析中所使用的最新版本。發(fā)布的原始方案包括以下結(jié)構(gòu)單元類型(Park等人,1987年):1.列元素2.梁?jiǎn)卧?.剪力墻元素4.邊緣列元素5.橫梁元素 列元素為藍(lán)本考慮非彈性彎曲變形,彈性剪切和軸向變形。梁元件由與考慮線狀彈性剪切變形非線性彎曲剛度模型建模。剪力墻包括彈性剪切和彎曲變形,有彈性耦合軸向分力。邊欄元素引入只考慮彈性軸向變形。橫

91、梁元件,具有對(duì)剪切壁的旋轉(zhuǎn)變形或效果束與它們所連接的,正在使用的彈性線性和旋轉(zhuǎn)彈簧建模。</p><p>  該方案的原始版本由三部分組成(Park等人,1987年。):?系統(tǒng)識(shí)別:靜態(tài)分析,以確定組分的屬性和該建筑物的最終故障模式。?動(dòng)態(tài)響應(yīng)分析:步步彈性動(dòng)態(tài)分析。?子結(jié)構(gòu)分析和損壞分析:所選子結(jié)構(gòu)的分析,綜合和評(píng)價(jià)的損壞。 該IDARC 2D可視為用于研究結(jié)構(gòu)的非線性響應(yīng)的目的一種簡(jiǎn)單而可靠的方

92、案。它可以顯示損壞的,該結(jié)構(gòu)經(jīng)歷的地方,什么類型。即由IDARC輸出表中顯示的損傷狀態(tài)如下所示:1.開裂(混凝土)或初始收益率(鋼鐵)。2.塑性鉸發(fā)展3.局部故障(超過標(biāo)準(zhǔn))4.初始剪裂縫5.剪切破壞 此外,IDARC將計(jì)算并顯示所分析的結(jié)構(gòu)的破壞指數(shù)。的IDARC作品從地震事件激發(fā)的數(shù)據(jù);像地震時(shí)程。3.3.2 SAP2000 SAP2000非線性是一個(gè)完全圖形化的Windows程序。從后期的版本不同SAP

93、90,這種新的非線性分析程序不再Fortran語(yǔ)言編寫工作。在SAP2000,建模過程,分析和結(jié)果顯示都在圖形用戶界面進(jìn)行。SAP2000中,橋的尺寸,大小和屬性將被定義。單位重量,力矩和扭轉(zhuǎn)將由SAP2000本身自動(dòng)計(jì)算。但抗壓強(qiáng)度,F(xiàn)CU和鋼筋的屈服</p><p>  3.4地震荷載 對(duì)EL-Centro地震波事件1940年5月以7.1里氏震級(jí)的大小選擇為是動(dòng)態(tài)負(fù)載在這項(xiàng)研究中。附錄顯示時(shí)間歷史和響

94、應(yīng)譜數(shù)據(jù),這是從地震事件。所記錄的最高地面加速度為0.95克,其中g(shù)是重力加速度(9.81米/秒2)。這項(xiàng)研究關(guān)注于下激發(fā)尺度如0.02克高達(dá)1.0克。3.5 IDARC分析 時(shí)程的分析將具有兩個(gè)和三個(gè)模式上運(yùn)行的結(jié)構(gòu)。這座橋的容量將確定,眼看橋梁是否能承受從埃爾 - 炫酷時(shí)間歷史數(shù)據(jù)的地震荷載。如果結(jié)構(gòu)不發(fā)生故障或損壞時(shí),將顯示在IDARC輸出控制以及損壞的零件。分析也會(huì)做各種地震作用的結(jié)果進(jìn)行比較。地面加速度將誘導(dǎo)從0.0

95、2克變化到1.0克。3.6 SAP2000分析 SAP200分析會(huì)反應(yīng)譜分析。分析正在尋求在埃爾 - 炫酷響應(yīng)譜結(jié)構(gòu)響應(yīng)。響應(yīng)譜是一個(gè)系統(tǒng)的興奮,它的基礎(chǔ),并表示在最大響應(yīng),固有頻率而言,ω。見附錄的埃爾森特羅時(shí)間歷史數(shù)據(jù)和響應(yīng)譜。進(jìn)行反應(yīng)譜分析,以驗(yàn)證梁和柱的設(shè)計(jì)容量是否足夠。</p><p>  3.7 模型 這座橋是仿照作為IDARC分析二維框架。每個(gè)橋接件被細(xì)分到多個(gè)節(jié)點(diǎn),以便所述結(jié)構(gòu)模

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論