外文翻譯---使用直流電弧等離子體噴射合成納米級摻銻錫氧化物粒子_第1頁
已閱讀1頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  英文原文</b></p><p>  Synthesis of nano-sized antimony-doped tin oxide (ATO) particles using a DC arc plasma jet</p><p>  Keywords: Thermal plasma Antimony-doped tin oxide

2、 (ATO) Nanopowder</p><p><b>  Abstrct </b></p><p>  Nano-sized antimony-doped tin oxide (ATO) particles were synthesized using DC arc plasma jet. The precursors SnCl4 and SbCl5 wer

3、e injected </p><p>  into the plasma flame in the vapor phase. ATO powder could conveniently be synthesized without any other post-treatment in this study. To control the doping amount of antimony in the ATO

4、 particles, the Sb/Sn molar ratio was used as an operating variable. To study the effect of carrier gas on the particle size, argon and oxygen gases were used. The results of XRD and TGA show that all Sb ions penetrated

5、the SnO2 lattice to substitute Sn ions. With the increased SbCl5 concentration in source mater</p><p>  1. Introduction</p><p>  SnO2 is a typical wide band gap semiconductor and its conductivit

6、y is generally realized by non-stoichiometry associated with oxygen vacancies in the SnO2 lattice . However, the content of oxygen vacancies in SnO2 is</p><p>  typically difficult to control. Tin oxide dope

7、d with Sb, Mo, and F has been studied in the past due to the unique properties of the doped tin oxide such as preferable conductivity and transparency in visible light wavelength range . In particular, Sb is considered t

8、he best dopant due to its stability. Antimony-doped tin oxide (ATO) is an n-type semiconductor with electrons in the tin 5-based conduction band provided by the antimony dopant . The conductivity and transparency can be

9、controlled by </p><p>  ATO has been studied in the past to measure its properties of the inherent electrochromism as well as its capacity for use in charge storage and as a catalyst . At low Sb doping level

10、, ATO has properties of transparency at the visible region with good conductivity, while reflecting infrared light. These characteristics enable ATO to be used as a transparent electrode for electrochemical devices , dis

11、plays , and heat mirrors and energy storage devices . Heavily doped ATO is a good catalyst for th</p><p>  Thus far, ATO particles have been mainly synthesized by solid and liquid state reaction method, such

12、 as solid state reaction , coprecipitation , a hydrothermal method , and a sol–gel method . Although solid and liquid state reactions are considered suitable methods to synthesize ATO nanopowder, these approaches require

13、 a large quantity of solution and organic materials, longer processing time, heat treatment for crystallization,</p><p>  filtration, and drying process. To overcome these weak points, in the present work we

14、 introduce a thermal plasma process to synthesize ATO nanopowders. The thermal plasma process has unique characteristics for the preparation of nanopowders as it involves high temperature and a quenching system .</p&g

15、t;<p>  In this paper, nano-sized ATO powders were synthesized by an argon plasma jet at atmospheric pressure. To control the doping amount of ATO, different Sb/Sn molar ratios were applied. The effects of the Sb

16、dopant on the phase composition and particle size have been discussed.</p><p>  2. Experimental</p><p>  Nano-sized ATO was synthesized using an argon plasma jet at</p><p>  atmosph

17、eric pressure. Precursors were tin (IV) chloride (SnCl4,</p><p>  99.9%, Aldrich Co.) and antimony pentachloride (SbCl5, 99%,Aldrich</p><p>  Co.). Because SnCl4 and SbCl5 easily evaporate at ro

18、om temperature</p><p>  and pressure, they were injected into the plasma flame in a vapor</p><p>  Fig. 1. Schematic diagram of DC plasma jet for synthesis of ATO nanopowders.</p><p&g

19、t;<b>  Table 1</b></p><p>  Experimental conditions for synthesis of nano-sized powder</p><p>  phase without additional heating. Fig. 1 shows a schematic diagram of the DC plasma sy

20、stem. The source material was injected into the plasma flame through a bubbler by carrier gases of Ar and O2. The carrier gas flow rate for injection of the source materials was maintained at 2 l/min. The concentration o

21、f SbCl5 in the source materialwas varied in order to control themolar ratio of SbCl5/SnCl4 from 0.27 to 1.40. The experimental conditions and operating variables are summarized in Tables 1 and 2</p><p>  Syn

22、thesized powder was collected at the reaction tube wall. These phase compositions of powder was analyzed using an Xray diffractometer (DMAX 2500/Rigaku), an energy dispersive Xray spectrometer (s-4300/Hitach Co.) and tra

23、nsmission electron microscopy (JEM-2100F/Jeol Co.). Morphology and particle size of the synthesized powder were observed via the scanning electron microscopy (S-4300/Hitachi Co.), light scattering particle size analyzer

24、(ELS-Z/Otsuka Co.) and the Brunauer,</p><p>  Emmett and Teller (ASAP ZOZO/Micromeritics Co.). The thermal properties of the obtained ATO powder were investigated using a thermogravimetric analyzer (TGA–SDTA

25、 851/ Mettler Toledo Co.).</p><p>  3. Results and discussion</p><p>  Fig. 2(a) shows the XRD patterns of the ATO powder synthesized from source materials of different Sb/Sn molar ratios. Doped

26、 Sb species was identified on the EDX graph, as shown in Fig. 2(b). Because all peaks agreed well with cassiterite SnO2 and the peak corresponding to Sb-related compounds was not included in the XRD patterns, it is conc

27、luded that all antimony ions were incorporated into the lattice of SnO2 to substitute for Sn ions. In addition, there was no noticeable change in the phase o</p><p>  Fig. 3 presents TGA curves of the synthe

28、sized ATO5 and commercial SnO2 and Sb2O3. The ATO5 did not show the weight loss and the SnO2 curve was similar to the ATO5 curve. Metallic Sb and its oxide, such as Sb2O3, Sb2O4, and Sb2O5, are volatile at higher tempera

29、ture due to their low evaporation heat and low melting point . Therefore, collected product</p><p>  Fig. 2. XRD patterns (a) and EDX analysis (b) of the synthesized ATO powders</p><p>  Fig. 4

30、 shows high-resolution TEM photographs images of pure SnO2 particle and Sb-doped particles in the synthesized ATO5. Clear lattice fringes in Fig. 4(a) reveal that well-crystallized SnO2 nanoparticles can be</p>&l

31、t;p>  prepared using the thermal plasma process. Meanwhile, defects due to the </p><p><b>  Table 2</b></p><p>  Operating variables for synthesis of ATO powder</p><p&g

32、t;  Sb dopants in the lattice of SnO2 were identified in the doped particle (Fig. 4(b)). The Sb incorporated into the SnO2 lattice in two ionic states was Sb (III) and Sb (V). Sb (III) has a larger ionic radius (r = 0.76

33、A? ) and Sb (V) has a smaller ionic radius (r = 0.60A? ) than Sn ion (r = 0.69A? ). Hence, the. Sb (III) and Sb (V) contents can change the lattice parameter and can induce a defect in the SnO2 lattice </p><p&

34、gt;  Generally, the approximate doped state in SnO2 can be readily identified by confirming the ATO color. Sb-doped SnO2 appears blue or dark blue color as in this study, whereas pure SnO2 and antimony oxides such as Sb2

35、O3, Sb2O4, and Sb2O5 do not show any blue color. According to</p><p>  Fig. 3. TGA analysis of synthesized ATO5, and commercial SnO2 and Sb2O3 in pure Ar atmosphere: (a) synthesized ATO5 by thermal plasma pr

36、ocess, (b) commercial SnO2 (99.9%, Aldrich Co.), and (c) commercial Sb2O3 (99.9%, Aldrich Co.).</p><p>  Nakanish et al. , as the doped level is increased, the color of ATO is changed from light to dark blue

37、. The color of ATO according to the doping level in the present work is summarized in Table 3. As the amount of doping of ATO was increased, the color became darker. This change in the ATO color is attributed to the prov

38、ision of additional electrons blow the</p><p>  conduction band (transition state) in SnO2 matrix by the Sb ions of doped state in the SnO2 lattice. It thus induces color due to the property of ready excitat

39、ion of the additional electrons .</p><p>  To control the doping level, the Sb molar ratio of the source material was varied. The amount of doped Sb in ATO as a function of operating variables is summarized

40、in Table 3. As the Sb molar ratio in the source material was increased, the amount of doped Sb in the ATO powder was increased. The results imply that the gas phase concentration of SbCl5 in the bubbler was increased as

41、a result of increasing the SbCl5 concentration in the source material. In other words, the ionic state of Sb was inc</p><p>  flame as the gas phase SbCl5 concentration was increased.</p><p>  W

42、e also evaluated the effect of varying the reacting gas (O2) flow rate. Fig. 5 presents the XRD analysis results for ATO synthesized at different flow rates of the reaction gas. At a flow rate of 5 l/min, the peak intens

43、ity was relatively high-compared with that at other conditions (ATO6 and ATO7). In addition, the doped amount was slightly higher than at other </p><p><b>  Table 3</b></p><p>  Char

44、acterization of ATO synthesized by the thermal plasma process</p><p>  conditions (ATO6 and ATO7), as shown in Table 3. This may be attributed to the difference in the crystallinity between ATO8 and other co

45、nditions.</p><p>  Fig. 4. TEM photographs of pure SnO2 particle and Sb-doped particle in ATO5 powder synthesized by the thermal plasma process: (a) pure SnO2 particle and (b) doped SnO2 particle.</p>

46、<p>  Fig. 5. XRD patterns of the synthesized powders under different reacting gas flow rates (O2): (a) ATO6: reacting gas flow rate 1 l/min, (b) ATO7: reacting gas flow rate 3 l/min, and (c) ATO8: reacting gas flo

47、w rate 5 l/min.</p><p>  Fig. 6. SEM image and particles size distribution of ATO synthesized under different types of the carrier gas: (a) ATO5, (b) ATO8, and (c) PSA results.</p><p>  To study

48、 the effect of the carrier gas type on the produced particles, we used the oxygen and argon as carrier gas. Fig. 6(a) and (b) shows SEM images of ATO5 and ATO8. It is observed that the size of the particles synthesized u

49、sing argon carrier gas was much smaller than that of the particles prepared using oxygen carrier gas. The particle size distribution is also analyzed by means of a light scattering particle size analyzer (PSA), as shown

50、in Fig. 6(c). The average size of the particles is 1</p><p>  The average crystallite size (DXRD) and the average grain size (DBET) are summarized in Table 3. DXRD and DBET were calculated by the full-width

51、at half-maximum using the Scherrer’s equation and the specific surface area . The results of the calculated particle size by XRD and BET similar to the SEM images and PSA results. </p><p>  Generally, in the

52、 gas phase reaction process, the particle size can be decreased by decreasing the total gaseous pressure in the system. Total gaseous pressure is dependent on the particle number density of the gas phase. This is related

53、 to the strong dependency of the mean free path of chemical species in the gas phase on the particle number density of the gas phase. The mean free path of chemical species in the reaction tube is described by the follow

54、ing equation .</p><p>  where l is the mean free path, d is the diameter of chemical species and n is the particle number density of the gas phase. As the particle number density is decreased, the mean free

55、path of chemical species is increased; therefore, the probability of collision among the chemical species decreases.</p><p>  In this work, when Ar is used as a carrier gas, it also acted as a diluting gas i

56、n the reacting tube due to its inactive properties. Hence, we think that Ar decreased the particle number density of the gas phase in the reaction tube and it is one of many factors fo decreasing the particle size.</p

57、><p>  4. Conclusion</p><p>  Sb-doped SnO2 particles were successfully synthesized using a thermal plasma process in the gas phase. We could easily identify the doped state by confirming presence

58、of blue color of ATO. The doped state was also analyzed by XRD, TGA, EDX and TEM. These analyses revealed that Sb-related compounds were not synthesized by the thermal plasma process and all Sb ions were doped in the SnO

59、2 lattice. As the concentration of SbCl5 in the source material was increased, the amount of the doped Sb in the </p><p>  property and caused a decrease in decreasing the particle size. PSA results showed t

60、hat the average particle size was 19 nm when argon was employed as a carrier gas whereas an average particle size of 31 nm was obtained in the case of oxygen carrier gas.</p><p>  Acknowledgement</p>

61、<p>  This work was supported by INHA University Research Grant.</p><p><b>  中文譯文</b></p><p>  使用直流電弧等離子體</p><p>  噴射合成納米級摻銻錫氧化物粒子</p><p>  關鍵詞: 熱等離子體

62、 摻銻錫氧化物(ATO) 納米粉末</p><p><b>  摘要:</b></p><p>  以納米摻銻錫氧化物顆粒為原料采用直流電弧等離子噴射。SnCl4和SbCl5注入等離子體火焰氣相。ATO粉可方便地在沒有任何其他合成后處理研究。控制興奮劑銻量的ATO粒子的銻/錫摩爾比被用作經營變數(shù)。氬和氧的氣體被用來探討載氣的顆粒大小的作用。 X射線衍射結果和TGA表

63、明,所有銻和二氧化錫離子進入晶格取代錫離子。隨著SbCl5 集中在原材料里,銻摻雜水平也有所增加。大小的顆粒合成使用氬載氣遠小于粒子準備使用氧載氣。對于氬氣, PSA在結果和掃描電鏡照片表明,平均粒徑為19納米。然而,氧氣,平均粒徑為31納米。</p><p>  1 引言 二氧化錫是一種典型的寬帶隙半導體及在二氧化錫其電導率普遍實現(xiàn)了非化學計量相關與氧空位 。然而,在二氧化錫氧的量通常是難以控制。研究摻雜

64、氧化錫銻,鉬,和F在過去是由于獨特性質的摻雜氧化錫,比如可見光波長范圍內可取導電性和透明度。特別是,銻被認為是最好的,因為它摻雜穩(wěn)定。摻銻錫氧化物(ATO)是一個n型半導體與電子在5天的導帶所提供的銻摻雜。電導率和透明度可控制不同的數(shù)額銻摻雜而不是操縱的非化學計量。 </p><p>  在過去ATO究了衡量其性能的影響固有的電致變色以及用于收費存儲和作為催化劑的能力。在低銻摻雜水平,ATO性能的透明度在可見光區(qū)

65、有良好導電性,同時又反射紅外光。這些特征使ATO被用作透明電極的電化學設,顯示,熱反射鏡和能源存儲設備。對于苯酚和氧化烯烴和脫氫和氨氧化烯烴, 重摻雜ATO是一個很好的催化劑。</p><p>  迄今為止, ATO粒子主要是合成的固體和液態(tài)反應的方法,如固相反應, 共沉淀法的水熱法,以及溶膠凝膠方法。雖然固體和液體狀態(tài)的反應被認為是適合合成納米ATO的方法, 這些方法需要大量的解決方案,有機材料,處理時間較長和

66、熱處理的結晶、過濾、干燥過程。為了克服這些薄弱點,在目前的工作介紹了一種熱等離子體過程綜合ATO納米。熱等離子體進程獨特的特點,編寫納米,因為它涉及高溫和淬火系統(tǒng)。 </p><p>  在本文中,納米粉體ATO在大氣壓力合成了一種氬等離子體射流??刂婆d奮劑數(shù)額ATO,不同銻/錫摩爾比適用。對影響銻摻雜對相組成和粒徑進行了討論。</p><p><b>  2 實驗</b&

67、gt;</p><p>  圖1直流等離子體射流的合成ATO納米示意圖。</p><p>  表1 實驗條件下合成的納米粉體</p><p>  在大氣壓力使用氬等離子體射流合成納米ATO。前體是錫(四)聚氯乙烯(四氯化錫, 99.9 % ,奧爾德里奇有限公司)和銻五( SbCl5 , 99 % ,奧爾德里奇有限公司) 。由于四氯化錫和SbCl5容易在室溫和壓力下

68、蒸發(fā),在蒸汽下給他們注入等離子體火焰(沒有額外的加熱)。圖1是直流等離子體系統(tǒng)示意圖。通過噴水式飲水并且運輸氬和氧氣給原材料注入等離子體火焰。注射材料的載氣流量來源維持在2升/分鐘。SbCl5的濃度在原材料中改動,以控制SbCl5/SnCl4 的摩爾濃度比從0.27至1.40 。實驗條件和操作變量匯總于表1和2 。</p><p>  合成的粉末收集試管壁上反應。使用X射線衍射( DMAX 2500/Rigaku

69、 ) ,一個能量色散X射線光譜儀( s-4300/Hitach有限公司)和透射電子顯微鏡( JEM-2100F/Jeol有限公司)分析這些粉末相的組成。通過掃描電子顯微鏡( S-4300/Hitachi有限公司),光散射粒度分析儀( ELS-Z/Otsuka有限公司)和布魯諾爾,埃梅特和柜員機( ASAP的ZOZO /麥克有限公司)觀察粒徑粉末的合成的形貌。采用熱分析儀(熱重SDTA 851/Mettler托萊多有限公司)對獲得ATO粉

70、末的熱性能進行了調查。</p><p><b>  3 結果和討論</b></p><p>  圖2款( a )用X射線</p><p>  顯示了用不同銻/錫摩爾比原材料合成ATO粉末的衍射圖譜。</p><p>  表2 合成ATO粉的操作變量</p><p>  摻雜Sb的種類的能譜被如

71、圖2款( b )所示 。因為所有的高峰顯示與錫石SnO2和高峰相應的銻化合物未列入X射線衍射圖譜,它的結論是,所有銻離子納入SnO2中替代錫離子。此外,階段錫也沒有明顯變化。 圖3列出合成ATO5, SnO2和Sb2O3的熱曲線。該ATO5沒有顯示的重量損失并且和錫曲線類似。金屬銻及其氧化物,如銻, Sb2O4 ,和Sb2O5 ,因為溫度低揮發(fā)性較高,所以熱蒸發(fā)和熔點低 。因此,在反應管墻收集產品不包括任何金屬銻及其氧化物材料。圖4顯示

72、高分辨率TEM照片圖像的純錫粒子和摻銻顆粒合成ATO5。4款( a )顯示明確格子條紋的圖,以及結晶二氧化錫納米粒子可準備利用熱等離子體過程。同時,由于銻摻雜的二氧化錫的晶格中確定摻雜顆粒的缺陷(圖4( b )項)。使用時, SB納入錫格在兩個離子銻( Ⅲ )和Sb (五)之間。銻(三)有較大的離子半徑(r= 0.76納米 ),和錫的ION ( R =0.69納米)相比Sb(五)有一個較小的離子半徑(r標= 0.60納米)。因此,銻(

73、Ⅲ )和Sb (五)的內容可以改變晶格參數(shù)并且可誘導在錫格的缺陷。</p><p>  一般來說,通過確定確認ATO粉的顏色可隨時確定摻雜二氧化錫的狀態(tài)。在這項研究中摻銻二氧化錫出現(xiàn)藍色或深藍色的顏色時,而純SnO2和銻的氧化物,如銻,Sb2O4,和Sb2O5不顯示任何藍顏色。據Nakanish的實驗,因為摻雜水平增加了,ATO的顏色是由淺色變成暗藍色。根據摻雜程度ATO的顏色在見表3。隨著摻雜量ATO的增加,顏

74、色變暗。這一變化在ATO顏色由于提供額外的電子打擊的導帶(過渡態(tài))的二氧化錫矩陣的銻離子摻雜的二氧化錫國晶格。因此,激發(fā)額外電子引起它的顏色變化 。</p><p>  圖4 TEM照片純錫粒子和Sb摻雜粒子ATO5粉末合成的熱等離子體過程:(a)純錫粒子和(b)摻雜SnO2 粒子。</p><p>  為了控制興奮劑的量,銻摩爾比源材料是多種多樣的。數(shù)額摻銻ATO粉作為一個功能經營變量

75、見表3。隨著銻摩爾比在原材料的增加,其數(shù)額摻銻在ATO粉末也增加。結果意味著當增加了集中在原材料中的SbCl5則噴水式飲水口的天然氣相濃度SbCl5也增加。 換言之,隨著血漿中火焰氣相SbCl5濃度的增加銻離子也增加。</p><p><b>  表3 </b></p><p>  表征合成ATO的熱等離子體過程</p><p>  我們還評估

76、了不同流速的反應氣體(氧氣)的影響。圖5介紹了不同的反應氣體流量合成ATO在X射線衍射下的分析結果。流速率為5升/分,比較與在其他條件( ATO6和ATO7 ),他的峰值強度相對較高。此外,如表3所示,摻雜量略高于在其他條件( ATO6和ATO7 )。這可能是由于ATO8和其他結晶度之間的不同。</p><p>  圖5 在不同的反應氣體流量利率(氧)下合成粉末X射線衍射圖譜:(a)ATO6:反應氣體流速1升

77、/分,(b)ATO7:反應氣體流速3升/分鐘,和(c)ATO8:反應氣體流量5升/分鐘。</p><p>  為了探討載氣類型對生產型粒子的影響,我們使用的是氧氣和氬氣為載氣。圖6(a)和(b)顯示的SEM照片ATO5和ATO8 。它指出,大小粒子合成氬載氣遠小于粒子準備使用氧載體天然氣。通過光散射粒度分析儀(簡稱PSA )對粒度分布進行了分析,如所示圖6條(c),分別為平均顆粒尺寸為19 nm的氬氣和31納米氧

78、載氣。</p><p><b>  圖6</b></p><p>  平均晶粒尺寸(DXRD)和平均晶粒尺寸(DBET)的摘要列于表3。DXRD和DBET使用舍勒方程和表面積比計算了全寬度的一半。用XRD和BET計算粒子大小的結果類似于SEM照片和PSA的結果。</p><p>  一般來說,在氣相反應過程中,在系統(tǒng)中顆粒大小可以減少降低總的氣

79、體壓力。在氣體階段共計氣體壓力取決于粒子數(shù)密度。這是有關強依賴于粒子數(shù)密度的平均自由程的化學物質氣體階段。平均自由程的化學物種在反應管用下列方程描述:</p><p>  其中L是平均自由程,d是直徑的化學物種,n是氣體階段的粒子數(shù)密度。正如粒子數(shù)密度下降,平均自由路徑化學物種的增加,因此,化學物質之間發(fā)生碰撞的概率下降。在這項工作中,氬氣作為載氣,由于其無效屬性它在反應管也起到了稀釋氣體的作用。因此,我們認為,

80、氬降低了氣相中的反應管中粒子數(shù)密度,它是減小粒徑眾多因素之一。</p><p><b>  4 結論</b></p><p>  使用熱等離子體在氣體的階段過程中成功地合成了摻銻二氧化錫粒子。我們可以很容易地確定藍色的ATO的摻雜狀態(tài)。還用X射線衍射,熱重分析, X射線能譜和TEM分析了ATO的摻雜狀態(tài)。這些分析顯示,熱等離子體過程中沒有合成銻化合物和所有的二氧化錫格

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論