2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  附錄 英文翻譯</b></p><p>  Spin control for cars.</p><p>  Stability control systems are the latest in a string of technologies focusing on improved diriving safety. Such sy

2、stems detect the initial phases of a skid and restore directional control in 40 milliseconds, seven times faster tthan the reaction time of the average human. They correct vehicle paths by adjusting engine torque or appl

3、ying the left- or-right-side brakes, or both, as needed. The technology has already been applied to the Mercedes-Benz S600 coupe.</p><p>  Full Text:COPYRIGHT 1995 American Society of Mechanical Engineers &l

4、t;/p><p>  Automatic stability systems can detect the onset of a skid and bring a fishtailing vehicle back on course even before its driver can react. </p><p>  Safety glass, seat belts, crumple zo

5、nes, air bags, antilock brakes, traction control, and now stability control. The continuing progression of safety systems for cars has yielded yet another device designed to keep occupants from injury. Stability control

6、systems help drivers recover from uncontrolled skids in curves, thus avoiding spinouts and accidents. </p><p>  Using computers and an array of sensors, a stability control system detects the onset of a skid

7、 and restores directional control more quickly than a human driver can. Every microsecond, the system takes a "snapshot," calculating whether a car is going exactly in the direction it is being steered. If ther

8、e is the slightest difference between where the driver is steering and where the vehicle is going, the system corrects its path in a split-second by adjusting engine torque and/or applying the ca</p><p>  A

9、stability control system senses the driver's desired motion from the steering angle, the accelerator pedal position, and the brake pressure while determining the vehicle's actual motion from the yaw rate (vehicle

10、 rotation about its vertical axis) and lateral acceleration, explained Anton van Zanten, project leader of the Robert Bosch engineering team. Van Zanten's group and a team of engineers from Mercedes-Benz, led by proj

11、ect manager Armin Muller, developed the first fully effective stabilit</p><p>  Automotive safety experts believe that stability control systems will reduce the number of accidents, or at least the severity

12、of damage. Safety statistics say that most of the deadly accidents in which a single car spins out (accounting for four percent of all deadly collisions) could be avoided using the new technology. The additional cost of

13、the new systems are on the order of the increasingly popular antilock brake/traction control units now available for cars. </p><p>  The debut of stability control technology took place in Europe on the Merc

14、edes-Benz S600 coupe this spring. Developed jointly during the past few years by Robert Bosch GmbH and Mercedes-Benz AG, both of Stuttgart, Germany, Vehicle Dynamics Control (VDC). in Bosch terminology, or the Electronic

15、 Stability Program (ESP), as Mercedes calls it, maintains vehicle stability in most driving situations. Bosch developed the system, and Mercedes-Benz integrated it into the vehicle. Mercedes engineers used </p>&l

16、t;p>  Stability control systems will first appear in mid-1995 on some European S-Class models and will reach the U.S. market during the 1996 model year (November 1995 introduction). It will be available as a $750 opti

17、on on Mercedes models with V8 engines, and the following year it will be a $2400 option on six-cylinder cars. About $1650 of the latter price is for the traction control system, a prerequisite for stability control. <

18、/p><p>  Bosch is not alone in developing such a safety system. ITT Automotive of Auburn Hills, Mich., introduced its Automotive Stability Management System (ASMS) in January at the 1995 North American Internat

19、ional Auto Show in Detroit. "ASMS is a quantum leap in the evolution of antilock brake systems, combining the best attributes of ABS and traction control into a total vehicle dynamics management system," said T

20、imothy D. Leuliette, ITT Automotive's president and chief executive officer. </p><p>  "ASMS monitors what the vehicle controls indicate should be happening, compares that to what is actually happen

21、ing, then works to compensate for the difference," said Johannes Graber, ASMS program manager at ITT Automotive Europe. ITT's system should begin appearing on vehicles worldwide near the end of the decade, accor

22、ding to Tom Mathues, director of engineering of Brake & Chassis Systems at ITT Automotive North America. Company engineers are now adapting the system to specific car models from</p><p>  A less-sophisti

23、cated and less-effective Bosch stability control system already appears on the 1995 750iL and 850Ci V-12 models from Munich-based BMW AG. The BMW Dynamic Stability Control (DSC) system uses the same wheel-speed sensors a

24、s traction control and standard anti-lock brake (ABS) systems to recognize conditions that can destabilize a vehicle in curves and corners. To detect such potentially dangerous cornering situations, DSC measures differen

25、ces in rotational speed between the two front</p><p>  The new Bosch and ITT Automotive stability control systems benefit from advanced technology developed for the aerospace industry. Just as in a supersoni

26、c fighter, the automotive stability control units use a sensor-based computer system to mediate between the human controller and the environment - in this case, the interface between tire and road. In addition, the syste

27、m is built around a gyroscopelike sensor design used for missile guidance. </p><p>  BEYOND ABS AND TRACTION CONTROL </p><p>  Stability control is the logical extension of ABS and traction cont

28、rol, according to a Society of Automotive Engineers paper written by van Zanten and Bosch colleagues Rainer Erhardt and Georg Pfaff. Whereas ABS intervenes when wheel lock is imminent during braking, and traction control

29、 prevents wheel slippage when accelerating, stability control operates independently of the driver's actions even when the car is free-rolling. Depending on the particular driving situation, the system may activat<

30、;/p><p>  The idea behind the three active safety systems is the same: One wheel locking or slipping significantly decreases directional stability or makes steering a vehicle more difficult. If a car must brake

31、 on a low-friction surface, locking its wheels should be avoided to maintain stability and steerability. </p><p>  Whereas ABS and traction control prevent undesired longitudinal slip, stability control redu

32、ces loss of lateral stability. If the lateral forces of a moving vehicle are no longer adequate at one or more wheels, the vehicle may lose stability, particularly in curves. What the driver senses as "fishtailing&q

33、uot; is primarily a turning or spinning around the vehicle's axis. A separate sensor must recognize this spinning, because unlike ABS and traction control, a car's lateral movement cannot be calcula</p>&l

34、t;p>  SPIN HANDLERS </p><p>  The new systems measure any tendency toward understeer (when a car responds slowly to steering changes), or over-steer (when the rear wheels try to swing around). If a car un

35、dersteers and swerves off course when driven in a curve, the stability control system will correct the error by braking the inner (with respect to the curve) rear wheel. This enables the driver, as in the case of ABS, to

36、 approach the locking limit of the road-tire interface without losing control of the vehicle. The stabilit</p><p>  The influence of side slip angle on maneuverability, the Bosch researchers explained, shows

37、 that the sensitivity of the yaw moment on the vehicle, with respect to changes in the steering angle, decreases rapidly as the slip angle of the vehicle increases. Once the slip angle grows beyond a certain limit, the d

38、river has a much harder time recovering by steering. On dry surfaces, maneuverability is lost at slip-angle values larger than approximately 10 degrees, and on packed snow at approximately </p><p>  Most dri

39、vers have little experience recovering from skids. They aren't aware of the coefficient of friction between the tires and the road and have no idea of their vehicle's lateral stability margin. When the limit of a

40、dhesion is reached, the driver is usually caught by surprise and very often reacts in the wrong way, steering too much. Oversteering, ITT's Graber explained, causes the car to fishtail, throwing the vehicle even furt

41、her out of control. ASMS sensors, he said, can quickly detect th</p><p>  It is important that stability control systems be user-friendly at the limit of adhesion - that is, to act predictably in a way simil

42、ar to normal driving. </p><p>  The biggest advantage of stability control is its speed - it can respond immediately not only to skids but also to shifting vehicle conditions (such as changes in weight or ti

43、re wear) and road quality. Thus, the systems achieve optimum driving stability by changing the lateral stabilizing forces. </p><p>  For a stability control system to recognize the difference between what th

44、e driver wants (desired course) and the actual movement of the vehicle (actual course), current cars require an efficient set of sensors and a greater computer capacity for processing information. </p><p>  

45、The Bosch VDC/ESP electronic control unit contains a conventional circuit board with two partly redundant microcontrollers using 48 kilobytes of ROM each. The 48-kB memory capacity is representative of the large amount o

46、f "intelligence" required to perform the design task, van Zanten said. ABS alone, he wrote in the SAE paper, would require one-quarter of this capacity, while ABS and traction control together require only one

47、half of this software capacity. </p><p>  In addition to ABS and traction control systems and related sensors, VDC/ESP uses sensors for yaw rate, lateral acceleration, steering angle, and braking pressure as

48、 well as information on whether the car is accelerating, freely rolling, or braking. It obtains the necessary information on the current load condition of the engine from the engine controller. The steering-wheel angle s

49、ensor is based on a set of LED and photodiodes mounted in the steering wheel. A silicon-micromachine pressure senso</p><p>  Determining the actual course of the vehicle is a more complicated task. Wheel spe

50、ed signals, which are provided for antilock brakes/traction control by inductive wheel speed sensors, are required to derive longitudinal slip. For an exact analysis of possible movement, however, variables describing la

51、teral motion are needed, so the system must be expanded with two additional sensors - yaw rate sensors and lateral acceleration sensors. </p><p>  A lateral accelerometer monitors the forces occurring in cur

52、ves. This analog sensor operates according to a damped spring-mass mechanism, by which a linear Hall generator transforms the spring displacement into an electrical signal. The sensor must be very sensitive, with an oper

53、ating range of plus or minus 1.4 g. </p><p>  YAW RATE GYRO </p><p>  At the heart of the latest stability control system type is the yaw rate sensor, which is similar in function to a gyroscope

54、. The sensor measures the speed at which the car rotates about its vertical axis. This measuring principle originated in the aviation industry and was further developed by Bosch for large-scale vehicle production. The ex

55、isting gyro market offers two widely different categories of devices: $6000 units for aerospace and navigation systems (supplied by firms such as GEC Marcon</p><p>  The yaw rate sensor has a complex interna

56、l structure centered around a small hollow steel cylinder that serves as the measuring element. The thin wall of the cylinder is excited with piezoelectric elements that vibrate at a frequency of 15 kilohertz. Four pairs

57、 of these piezo elements are arranged on the circumference of the cylinder, with paired elements positioned opposite each other. One of these pairs brings the open cylinder into resonance vibration by applying a sinusoid

58、al voltage at its n</p><p>  Stability controls can be disabled in situations in which some wheel slip and even lateral slip is beneficial, such as when a car is fitted with snow chains or is traversing loos

59、e gravel. </p><p>  Several drivers who have had hands-on experience with the new systems in slippery cornering conditions speak of their cars being suddenly nudged back onto the right track just before it s

60、eems that their back ends might break away. </p><p>  Some observers warn that stability controls might lure some drivers into overconfidence in low-friction driving situations, though they are in the minori

61、ty. It may, however, be necessary to instruct drivers as to how to use the new capability properly. Recall that drivers had to learn not to "pump" antilock brake systems. </p><p>  Although little

62、detail has been reported regarding next-generation active safety systems for future cars (beyond various types of costly radar proximity scanners and other similar systems), it is clear that accident-avoidance is the the

63、me for automotive safety engineers. "The most survivable accident is the one that never happens," said ITT's Graber. "Stability control technology dovetails nicely with the tremendous strides that have

64、 been made to the physical structure and overall capabilities o</p><p><b>  汽車的轉向控制</b></p><p>  控制系統(tǒng)穩(wěn)定性是針對提高駕駛安全性提出的一系列措施中最新的一個。這個系統(tǒng)能夠在40毫秒內實現(xiàn)從制動開始到制動恢復的過程,這個時間是人的反應時間得七倍。他們通過調整汽車扭

65、矩或者通過應用左側或右側制動,如果需要甚至兩者兼用,來實現(xiàn)準確的行車路線。這個系統(tǒng)已被應用于奔馳S600汽車了。</p><p>  穩(wěn)定的機械自動系統(tǒng)能夠在制動時發(fā)現(xiàn)肇端,并且在駕駛人員發(fā)現(xiàn)能夠反應以前實現(xiàn)車輛的減速。</p><p>  安全表、安全帶、撞擊緩沖區(qū) 、安全氣囊、ABS防抱死系統(tǒng)、動力控制、還有現(xiàn)在的穩(wěn)定調節(jié)系統(tǒng)。汽車安全系統(tǒng)的連續(xù)升級,已經產生了一種為保護汽車所有者安全

66、的設計模式。穩(wěn)定調節(jié)系統(tǒng)幫助駕駛員從不可控制的曲線制動中解脫出來,從而避免了汽車的回形滑行和交通事故。</p><p>  利用計算機和一系列傳感器,穩(wěn)定調節(jié)系統(tǒng)能夠檢測到制動的肇端并且比人更快的恢復對汽車的方向控制。系統(tǒng)每百萬分之一秒作出一次快照捕捉,以及斷汽車是否在按照駕駛路線行駛。如果檢測到汽車行駛路線和駕駛員駕駛路線存在一個微小的偏差 ,系統(tǒng)會在瞬間糾正發(fā)動機扭矩或者應用汽車左右制動。標準反應時間是40毫

67、秒----人的平均反應時間的七分之一。</p><p>  羅伯特博施工程系統(tǒng)負責人安東·范·桑特解釋說:“一個穩(wěn)定的控制系統(tǒng)能夠“感覺到”駕駛員想要運動的方向,通過控制角度,油門踏板的位置,制動板的狀態(tài)來確定汽車實際運動路線的偏航比率(汽車偏離方向軸的角度)和橫向加速度”。項目負責人阿明·馬勒領導著范桑特的工作小組和奔馳汽車公司的工程師 發(fā)明了第一個完全有效的穩(wěn)定調節(jié)系統(tǒng),該系統(tǒng)由

68、發(fā)動機扭矩控制、制動系統(tǒng)、牽引控制系統(tǒng)組成以實現(xiàn)最小的理想與現(xiàn)實的運動差距。</p><p>  汽車安全專家相信穩(wěn)定調節(jié)系統(tǒng)能夠減少交通事故的發(fā)生,至少是在嚴重的損壞事故。安全統(tǒng)計表明,多數(shù)的單車撞擊致命事故(占致命事故發(fā)生的4%)能夠通過應用這項新技術避免。這項新系統(tǒng)的額外費用主要用于一系列目前汽車日益普遍應用的制動/牽引控制鎖組件。</p><p>  穩(wěn)定調節(jié)系統(tǒng)技術首次應用于歐洲

69、的奔馳S600汽車,是由德國斯圖加特市的羅伯特博施公司和奔馳公司在過去幾年共同研制的。該系統(tǒng)在博施公司被稱為汽車動力控制(VDC),而默西迪思叫它穩(wěn)定電控計劃(ESP),作用就是在任何狀況下維持車輛的穩(wěn)定性。博施公司開發(fā)了這項系統(tǒng),奔馳公司把它應用于車輛。工程師默西迪絲在柏林應用近乎藝術的代姆勒奔馳汽車虛擬駕乘模擬器在極限情況下對系統(tǒng)進行評估,例如極強的側風。然后他們在瑞典的安杰普勞附近的后娜瓦安湖的冰面上進行性能測試。工作通常是在公路

70、上進行以適用于公共汽車和大卡車,例如避免的折合問題。</p><p>  穩(wěn)定調節(jié)系統(tǒng)將在1995年中應用于歐洲S系列產品上,隨后會在1996年進入美國市場(1995年11月產品)。用戶可以選擇750美元的系統(tǒng),就像應用于默西迪絲的試驗用的V8發(fā)動機上的,也可以選擇價格為2400美元的應用于六缸發(fā)動機汽車的系統(tǒng)。后者的系統(tǒng)中差不多有1650美元是用于牽引控制系統(tǒng),該系統(tǒng)是穩(wěn)定性系統(tǒng)的先決條件。</p>

71、<p>  并不是只有博施公司一家在開發(fā)這樣的安全系統(tǒng),美國密歇根州的ITT(美國國際電信公司)汽車公司的奧伯恩·希爾,在1995年1月底特律北美國際汽車展覽會上展示了了他們自己的汽車穩(wěn)定性管理系統(tǒng)(ASMS),</p><p>  “車輛控制器應該像空對地導彈的控制器那樣,比較而言,事實上那已經實現(xiàn)了,不同的是兩者的費用不同”,美國國際電信公司駐歐洲空對地導彈控制工程負責人約翰尼斯

72、83;格雷得說。北美ITT公司“汽車制動和底盤工程”主管湯姆·麥茲指出,在未來十年美國國際電信公司的系統(tǒng)要首先出現(xiàn)在車輛上。很多工程師正在為六輛最初制造精密的車輛模型上調試這個系統(tǒng)。</p><p>  一個略微低級和效率較低的博施穩(wěn)定調節(jié)系統(tǒng)也在1995年出現(xiàn)在慕尼黑寶馬公司的AG系列750iL和850Ci V-12兩款車上。寶馬公司的穩(wěn)定調節(jié)系統(tǒng)(DSC)運用的車輪速度傳感器同牽引控制系統(tǒng)和標準AB

73、S防抱死系統(tǒng)一樣能夠辨認外部情況,使車輛在沿曲線行駛和轉彎時更容易實現(xiàn)。為了檢測出車輛轉彎時潛在的危險,DSC系統(tǒng)檢測的是兩前輪在轉彎時的速度差,DSC系統(tǒng)添加了一個更高級的角度傳感器利用現(xiàn)有的一個車輛速度,并且引入了它自身帶有的關于完全抱死系統(tǒng)、牽引控制系統(tǒng)、穩(wěn)定調節(jié)系統(tǒng)軟件控制原理。</p><p>  新的博施和ITT自動穩(wěn)定調節(jié)系統(tǒng)得益于航空工業(yè)高級技術的發(fā)展。就像超音速發(fā)動機,汽車的穩(wěn)定調節(jié)單元運用一個

74、基于計算機系統(tǒng)的傳感器來調和人與系統(tǒng)之間的,還有輪胎與地面之間差異。另外,系統(tǒng)采用了用于導彈制導系統(tǒng)的回旋傳感器。</p><p>  高于ABS防抱死系統(tǒng)和牽引控制之處</p><p>  根據(jù)范·桑特和博施公司的瑞娜·伊哈德,杰瑞·帕夫在《汽車工程師》雜志所提到的,穩(wěn)定調節(jié)是ABS防抱死系統(tǒng)和牽引控制系統(tǒng)的合理擴展。但是ABS系統(tǒng)的作用發(fā)生在制動時車輪轉向

75、將被鎖死時 ,牽引控制是預防加速時的車輪滑動,穩(wěn)定系統(tǒng)是當汽車自由轉向時能獨立于駕駛員作出操作。依靠不同的駕駛狀況系統(tǒng)可以使每個車輪制動或者迅速使四個輪轉速適合于發(fā)動機的扭矩,從而使車輛穩(wěn)定和減少由于制動失控帶來的危險。新系統(tǒng)不僅僅控制完全制動還可以作用與部分制動、行車路線,加速度、車輪與發(fā)動機動作的滯后等,這些是ABS防抱死系統(tǒng)和牽引控制系統(tǒng)所遠遠不能達到的。</p><p>  三種積極的安全系統(tǒng)的作用時刻的

76、是一致的,那就是一個車輪被鎖死或者車輪漸漸失去方向穩(wěn)定性或者車輪使得行駛更加困難。如果一輛車必須在地摩擦路面制動,必須避免車輪抱死以保持行駛穩(wěn)定性和可駕駛性。</p><p>  ABS防抱死系統(tǒng)和牽引控制系統(tǒng)能夠預防側滑,而穩(wěn)定性系統(tǒng)采取減少側面穩(wěn)定措施.如果行駛車輛的側力不再適當?shù)姆峙湓谝粋€或者更多輪上,車輛就會失穩(wěn),尤其是車輛沿曲線行駛時。駕駛員感覺到的“搖擺”起初是彎轉或者與車的坐標形成一個紡錘形時。一個

77、獨立的傳感器必須能夠識別這個“紡錘”,而 ABS防抱死系統(tǒng)和牽引控制系統(tǒng)通過車輪的轉速不能檢測車輛的橫向運動</p><p><b>  轉向操作</b></p><p>  新系統(tǒng)通過對微小的汽車轉向不足(當車輛對于方向盤操作反應遲緩)和方向盤的“過敏”反應(后輪發(fā)生來回擺動) 。當車輛在轉向時如果發(fā)生轉向不足和突然轉向運動時,穩(wěn)定調節(jié)系統(tǒng)能夠通過后輪進行內部制動(

78、針對曲線)糾正錯誤。這種情況是駕駛員部感覺類似于ABS防抱死系統(tǒng)接近于抱死極限,而是車輛不失去控制。穩(wěn)定調節(jié)系統(tǒng)能夠通過發(fā)動機節(jié)流或者單輪制動來減小推動力。</p><p>  博施公司的研究員解釋說:“側面偏離角度表明此時車輛的偏航靈敏性,并反映為轉向角度,轉向角度隨著車輛偏離角度的增大而減小。一旦偏離角度超過某一限度,駕駛員就很難重新進行操作。在干燥的路面偏離角度不能夠超過10度,而在積雪路面上極限偏離角度為

79、4度。</p><p>  多數(shù)司機沒有從制動中恢復的經驗。他們不知道輪胎和地面之間的摩擦系數(shù),更不知道他們的車的側緣穩(wěn)定邊界。當極限被沖破時,駕駛員通常會很緊張以至于做出錯誤的反應。ITT的格雷柏解釋說:“過渡轉向引起車輛擺尾,試車更快的失控。ASMS傳感器能夠快速的檢測到制動開始時各個車輪的活動,從而使車輛恢復到穩(wěn)定行駛線。</p><p>  對于穩(wěn)定調節(jié)系統(tǒng)界面的友好性是很重要的,

80、這樣可以預言帶有穩(wěn)定系統(tǒng)的駕駛和普通駕駛給人的感覺沒有什么區(qū)別。</p><p>  穩(wěn)定系統(tǒng)最大的優(yōu)點在于速度,它不僅可以對制動作出快速反應,還可以對車輛狀況(例如車重變化,輪胎磨損)、路面質量作出快速反應。這樣系統(tǒng)就能夠通過干邊側面受力穩(wěn)定化處理達到最好的駕駛穩(wěn)定性。</p><p>  穩(wěn)定系統(tǒng)識別駕駛員想做的(理想路線)和車輛實際行駛路線(實際路線)的不同,目前的汽車需要一套高效的

81、傳感器和一臺高效處理信息的計算機。</p><p>  博施公司的VDC/ESP電子控制單元有一個由兩個48兆的ROM組成的傳統(tǒng)實驗電路板。范桑特說:“48KB的內存容量是大量用以完成設計任務的‘智能’的代表”。他在SAE中指出,ABS防抱死系統(tǒng)是獨立的,只提供四分之一的這樣的容量,而ABS和牽引控制系統(tǒng)組合在一起的容量只有這個軟件容量的一半。</p><p>  除了ABS防抱死系統(tǒng)和牽

82、引控制系統(tǒng)所具有的關系傳感器外,VDC/ESP運用了偏航比率傳感器、橫向加速度傳感器、轉向角傳感器、制動壓力傳感器來獲取汽車的加速、搖擺或者剎車的信息。系統(tǒng)通過管理員獲得所需的通常的路面信息。方向盤上的傳感器裝在一組安裝在方向盤上的發(fā)光二極管和光敏二極管上。一只硅壓力傳感器通過控制前輪剎車環(huán)內壓力油的壓力控制制動壓力(因為剎車壓力來源于駕駛員)。</p><p>  確定車輛實際的行駛路線是一項非常復雜的工作

83、。通過必須的縱向滑動車輪速度傳感器提供給反向制動或者牽引控制系統(tǒng)的車輪轉速信號,以對可能發(fā)生的動作作出精確的分析,無論如何側向難預料的運動分析是必須的,所以系統(tǒng)必須再拓展兩個額外的傳感器---偏航比率傳感器和側向加速度傳感器。</p><p>  橫向加速度表檢測沿曲線行駛時所帶來的受力狀況。這種類似的傳感器通過一臺直線霍爾發(fā)電機把彈簧的直線運動轉變成電信號來實現(xiàn)對彈簧機構的控制。這種傳感器必須很靈敏,它的控制

84、角為±1.4g。</p><p><b>  偏航比率回轉儀</b></p><p>  最新的穩(wěn)定調節(jié)系統(tǒng)的核心在于類似于陀螺儀的偏航比率回轉儀。傳感器測量車輛對豎直軸的旋轉。這個測量原理來源于航空工業(yè),并且被博施公司大規(guī)模的應用于汽車工業(yè)。現(xiàn)有的回轉儀市場提供兩種選擇,一種是應用與航空航天業(yè)的價值6000美元(由位于英國羅徹斯特的美國通用電器公司航空股份

85、有限公司提供),另一種是用于照相機的價值160美元。由SAE報得知博施公司采取一種圓柱形設計方案以實現(xiàn)低成本下的高性能。這種傳感器需要一項更大的投資以應對汽車所處的極端環(huán)境狀態(tài)。同時偏航比率回轉儀的價格必須降低,這樣才能充分應用與汽車。</p><p>  偏航比率回轉儀有一個復雜的內部結構,其內部是有一個很小的圓柱形鋼管伺服測量元件。圓柱的薄壁上有壓電元件能夠在15千赫茲的頻率下震動。四對這樣的感應器安放在圓柱

86、體的周圍,一對元件的位置與另一對的位置相對。其中的一對通過應用正弦電壓引起柱體在其固有頻率下產生共振,并將振動傳送給變頻器。在每一對傳感器之間,振顫節(jié)點繞著汽車的垂直軸作細微的運動。這時如果沒有偏航輸入,震動曲線就是一條穩(wěn)定的曲線。如果有信號輸入,節(jié)點的位置和曲線的波谷就會在相對的防線繞著圓筒壁做旋轉運動(科里奧利加速度)。這個輕微的位移就會成為汽車偏航比率的度量標準。</p><p>  穩(wěn)定調節(jié)系統(tǒng)會在車輪打

87、滑,或者側面打滑時必須時失去效果,例如 在雪天給汽車安裝合適的防護鏈或者車在松軟的沙粒中行走時。</p><p>  許多司機把新系統(tǒng)在光滑轉彎處他們的車尾部將要被甩出去的時候被“推”回到正確的軌跡上經驗相互宣傳。 </p><p>  許多觀察員指出,穩(wěn)定調節(jié)系統(tǒng)可能會使司機在地摩擦力的路面過分自信,盡管他們占少數(shù)?;蛟S需要指導司機怎樣來完全正確的使用穩(wěn)定調節(jié)系統(tǒng)。 就像當初讓司機學習不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論