版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 中文2975字</b></p><p><b> 英文原文</b></p><p> PROSPECTS ESTIMATION OF KNOWN SYSTEMS APPLICATION FOR COAL SEAMS MINING AT GREAT DERTH</p><p> Prof.
2、w.p.Zubov</p><p> Leningrad Mining Institute</p><p> Abstract: Estimation of present and future situation in technological schemes on coal mining at great depth applying highly productive mech
3、anized complexes is presented here, Stis shown that the decrease both in operation concentration and the share of pillar mining at deep mines is connected with increasing difficulties in development working support behin
4、d the face as well as prevention of roof caving in face area.</p><p> Introduction:</p><p> Underground coal mining efficiency depends at Iarge extent on technical economic indices of deep min
5、es, the level of their development being steadily increased. In transition to deeper levels specific expenditures increase parallel with the deterioration of geological conditions in coal seams mining. At mines of Donets
6、k basin where seams are mined at a depth of 500m ad more, the depth increase for every 100m results in production cost to 3-4%,here labour productivity of miners decreases in 6-8%[</p><p> One of the main e
7、ffective ways to neutralize negative depth influence on under-round coal mining efficiency is to increase average daily face output on the basis of using complex mechanization in stopping.</p><p> At non-ga
8、ssy mines the application of long pillar mining leads to face output in 1.2-1.65 times compared to average daily face output in longwall combined methods.</p><p> Even more effective appeared to be long pil
9、lar mining in stopping under condition characterized by increased gas emission in goaf.</p><p> In gassy mines the face output is determined taking into account the requirement of methane dilution up to per
10、missible concentration, with methane emitting into ventilation current. In long wall and combined methods the intake air should enter the face along one of the development workings and the return air runs along the other
11、 development working. Maximum intake air quantity to the stope depends on both air current veloclty, regulated by safe security rules in working area and cross section ar</p><p> The application of long pil
12、lar mining permits prior to stopping to carry on some measures for seam degasification and use more effective schemes of panel ventilation.</p><p> Thus in applying both long pillar mining in the variant “f
13、ace-sub-panel” and in shuttle scheme of panel ventilation relatively high face output (1000-1500t/day)may be reached at mines with relative gas emission up to 15m3/t, as well as at mines with higher gas emission when met
14、hane does not emit from the goaf.</p><p> In estimating the prospects of long pillar and longwall mining as the space and plan basis for technological schemes in stopping operations at great depths, it is a
15、lso necessary to evaluate the following factors. With the increase of coal seams depth, the methane content both in workings and in seams changes according to hyperbolic curve approaching to some limited value. The stron
16、ger influence of depth is more evident in gassy zones associated with developed areas of coal-bearing deposits conta</p><p> In the regions where antracite groups 11A-12A occur lower than the zones of gas e
17、mission, natural gas content increases at first up to maximum and then decreases sharply in values typical for zones of gas ecmission [2]. Such character of natural gas content change marked for measures C of Torezsk-Sn
18、ezhnyansk region and measures C of Bokovo-Chrustalsk geological-industrial region may be explained by the increase of metmorphism grade of antracite seams with the depth increase.</p><p> Practically speaki
19、ng in donetsk basin methane content of seams is not traced onlyin its southeastern parts, where the seams up to a bepth of 1600 m are represented by high metamorntosed antracites. Therefore, in the nearest future gas fa
20、ctor influence on economic efficiency of underground coal mining will be increasing in the USSR.Taking into account good results achieved by known ways of preliminary seams gasitication, it should be assumed that the mos
21、t negative influence of operation effioncy</p><p> The fact that gas emission from the developed area increases panel gas balance depth deserves special attention in estimating some prospects of longwall.
22、 Thus, in Donetsk basin a coal seam up to 600 m depth becomes the main source of gas emitting into stopes and development workings, methane emission from the coal seam is 40-50%and in some cases up to 20% of total gas em
23、ission volume in transltion of mining operations to a depth of 700-1000m. Besides at deep levels the preliminary degasificati</p><p> Thus gas emission from the developed area becomes the main factor determ
24、ining maximum face output in seam mining at great depths. Under these conditions to solve the problem of panels ventilation only by seam degasification measures seems impossible.</p><p> In highly categoriz
25、ed mines with gas emission not more than 40% during stopping some restricting on ventilation can be overcome only be applying direct scheme of panel ventilation with return air freshing in goaf. But this scheme of ventil
26、ation is practically realized only in pillar mining.</p><p> The facts mentioned above indicate that the increased application of pillar mining combined with direct ventilation schemes should be considered
27、as priomising and economically proved. It perfects deep mining when highly productive mechanized mechanized complexes are used.</p><p> Though in Donetsk mines the problem concerning the average daily face
28、output increase is acute, the share of pillar mining comprises not more than 43%, including about 10% of pillar mining with direct panel ventilation. Moreover, with depth there is a strong tendency of decreasing the numb
29、er of faces developed by pillar mining. Thus in “Makeevugol” mines the share of pillar mining decreased from 60 to 35% during the period of 1975-1985. The average depth of mining during this period increased in</p>
30、<p> As a whole in Donetsk basin the share of pillar mining in mines extracting seams at depths up to 600m is 48.2%, at depths of 600-1000m it is 40.2% and at depths more than 1000m it is not more than 19%.Now at
31、 deep levels long wall and combined methods of mining in the so-called “single face” variety are widely used.</p><p> Long wall and combined (in the shape of) methods prevail in deep mines of FRG. In the la
32、te 1985 their share in the number of faces was more than 65%, as to their share in the overall mining of commercial coal it was 62.2%[3].</p><p> Taking into account that at large depths seams are mined in
33、new or reconstructed mines the share of pillar mining decreases with depth. Thus, this fact reflects the tendency to change the technological schemes of mines with transition of mining to deeper levels. This tendency is
34、in contradiction with progressive directions of underground coal mining technology preventing negative rock pressure manifestation.</p><p> The investigations carried out showed that the decrease of pillar
35、methods in deep mines is caused mainly by the following reasons. When mining at deeper levels there appeared more difficulties to maintain district development working at deeper seams at depths of 800-1200m expenditures
36、on sub-level maintenance in pillar mining are 1.5-2.5 times more than these in longwall mining. In pillar mining reliable means of safety and support providing stability in development workings behind the longwall </p
37、><p> In non-pillar seam mining the use of longwall systems produces means to increase the number of faces adjacent to one inclination and thus to reduce the length of main development workings that should be
38、supported, markedly decreasing the application of pillar mining in deep Donetsk mines. Therefore, in panel mine development at longwall mining in the variety “face-level” it becomes possible to develop two faces as well
39、as to prepare simultaneously another two faces within the two-sided panel. In</p><p><b> SUMMARY</b></p><p> At great depth of mining characterized by great gas emission in goaf it
40、 becomes possible to increase greatly daily average face output only by using pillar mining. This system allows to use direct panel ventilation schemes with return air freshing in goaf.</p><p> The decrease
41、 of pillar mining with depth increase is mainly connected with the absence of supports and means of safety at miner’s disposal that should provide workings stability behind the face during pillar recovery when swelling r
42、ocks occur in the seam bottom, as well as the ways of rock pressure control that eliminate rock caving in face ends.</p><p> Grinko N.K. Some problems in deep mines. Coal, 1989,N 9,p.p.21-22.</p><
43、;p> Brizanev A.M. Methane distribution regularity in Donetsk Basin. M.Ugol,iss. 6,1986,p, 33.</p><p> Clas F.Faift P.The state of panels in FRG coal industry by l985. Glückauf, 1985,N24,P.P.19-24.&
44、lt;/p><p><b> 中文譯文</b></p><p> 現(xiàn)有開采方法在礦井深部開采中應(yīng)用的評估</p><p> W.P.Zubov教授</p><p> (蘇)列寧格勒礦業(yè)學(xué)院</p><p> 摘要:本文介紹了用綜合機(jī)械化開采礦井深部煤層時當(dāng)前和未來技術(shù)狀況的評估??梢钥闯觯?/p>
45、低集中開采程度和減少柱式開采法所占的比例,將增加工作面后方采準(zhǔn)巷道支護(hù)的困難并使工作面頂板陷落的防止更加困難。</p><p><b> 概述:</b></p><p> 煤礦地下開采的效益在很大程度上取決于礦井深部煤層開采的技術(shù)經(jīng)濟(jì)指標(biāo),礦井開采的深度正在逐步增大。在向較深水平過渡時,隨著煤層開采的地質(zhì)條件的惡化,所需的額外的資金也增加了。在頓涅茨克煤田的很多礦
46、井中,煤層埋藏深度已超過500 m,開采深度每增加100 m,生產(chǎn)費(fèi)用就增加3~4%,工人的勞動生產(chǎn)率就下降6~8%。</p><p> 抵消深度對煤礦地下開采效益影響的主要有效方法之一是在回采工作面使用綜合機(jī)械化裝備的基礎(chǔ)上提高工作面平均日產(chǎn)量。</p><p> 在無瓦斯礦井,應(yīng)用長壁開采法導(dǎo)致工作面產(chǎn)量較長壁聯(lián)合開采法增長了1.2~1.65倍。</p><p&
47、gt; 甚至在采空區(qū)瓦斯涌出量增加的條件下,長壁開采法也顯得很有效。</p><p> 在瓦斯礦井中,工作面產(chǎn)量取決于甲烷稀釋到允許的濃度并排放到風(fēng)流中去這一通風(fēng)方面的要求。采用長壁聯(lián)合開采法時,入風(fēng)流應(yīng)沿一條采準(zhǔn)巷道進(jìn)入工作面,回風(fēng)流則沿另一條巷道排出。進(jìn)入工作面的最大風(fēng)量取決于按安全規(guī)程規(guī)定的采區(qū)風(fēng)流風(fēng)速以及現(xiàn)流自由流過工作面的橫斷面面積。由于風(fēng)速和斷面的限制,實(shí)際上不大可能增加進(jìn)入盤區(qū)的入風(fēng)量。按上述理
48、由,在甲烷涌出量增加的礦井中,用長壁聯(lián)合開采法的工作面實(shí)際平均日產(chǎn)量較綜合機(jī)械化開采法低3~5倍。</p><p> 應(yīng)用長壁開采法允許開采前采取一些措施排放煤層瓦斯并采用更有效的盤區(qū)通風(fēng)方式。</p><p> 這樣,當(dāng)?shù)V井中相對瓦斯涌出量達(dá)到15 m3/t,或當(dāng)采空區(qū)中尚無甲烷涌出而礦井中瓦斯當(dāng)量較高時,無論是在不同的“工作面——子盤區(qū)”系統(tǒng)中還是在往復(fù)式盤區(qū)通風(fēng)方式中,應(yīng)用長壁開
49、采法都可能取得相對較高的工作面產(chǎn)量(1000~1500 t/d)。</p><p> 評估長壁和長壁開采法礦井深部回采工序及其空間和在計(jì)劃基礎(chǔ)上的技術(shù)方案時,下面的因素值得考慮。隨煤層深度的增加,甲烷在采區(qū)和煤層中的含量都呈雙曲線變化并達(dá)到某一限定值。在與已開發(fā)的煤層走向沉積地區(qū)有聯(lián)系的瓦斯地帶,較強(qiáng)烈的深度影響非常明顯。煤層走向范圍高度集中以及由此引起的瓦斯排放向較深的地下傳播,是上述現(xiàn)象形成的原因。這種甲烷
50、承載能力變化規(guī)律在頓涅茨吉克煤田開采下列礦井中也注意到了,即馬克維斯克,凱瑞莫斯克,奧馬維斯克和維瑞斯勞瑞斯克礦井以及凱瑞德斯克地質(zhì)工業(yè)區(qū)。</p><p> 無煙煤組11A~12A地帶的瓦斯涌出量低于正常地區(qū),在那里,自然瓦斯含量一開始就上升并達(dá)到極值,然后急劇下降到典型的瓦斯涌出地區(qū)的數(shù)值[2]。這種自然瓦斯含量變化的特征已在Torezsk-Rovenetsky 地區(qū)C32煤層中測出,在Bokovo-Chr
51、ustalsk地質(zhì)工業(yè)區(qū)的C52煤層中也已測出這種特征可以用隨著無煙煤埋藏深度的增加其變質(zhì)程度也隨之增加來進(jìn)行解釋。實(shí)際上,在頓茨克煤田煤層中甲烷含量僅僅在煤田東南部分未被測到,在那時,煤層深達(dá)1600 m,為高度變質(zhì)的無煙煤。因此,蘇聯(lián)在近期煤礦地下開采中,瓦斯這一因素在經(jīng)濟(jì)上的影響將會增大。</p><p> 考慮到現(xiàn)有的原始煤層排放瓦斯的方法取得的良好效果,可以假定,礦井中廣泛采用長壁開采時,對于開采效益
52、最大的負(fù)影響發(fā)生在瓦斯涌出量超過15 m3/t。日的礦井中。頓茨克煤田列出了這一因素隨深度增加而變化的趨勢,1940年,高與瓦斯類型礦井?dāng)?shù)量占17%,1970年為45%,1980年為60%1987年后期占68.8%。在此期間平均開采深度從198 m增至659 m。</p><p> 開采地區(qū)的瓦斯涌出量增加了盤區(qū)瓦斯深度變化的平衡關(guān)系,在評價長壁開采的某些方面時,這一事實(shí)應(yīng)引起特別的注意。在頓涅茨克煤田,某一煤
53、層埋藏至600 m深時,便成為涌入工作面及開采區(qū)的瓦斯的主要來源。從該煤層中排放的甲烷含量為40~50%,在某些情況下可升至瓦斯總涌出量的20%,此時開采深度為700~1000 m。除受深度影響外,初期瓦斯排放高效率也因煤層瓦斯?jié)B透性的降低而下降。事實(shí)上,用常規(guī)方法測得深部煤層瓦斯排放的實(shí)際效率不超過15~30%。而要求降低開采時的瓦斯涌出量的數(shù)值不應(yīng)低于60~70%,此時瓦斯因素的限制條件更加嚴(yán)格了。</p><p
54、> 因此,開采地帶的瓦斯涌出成為限制礦井深部開采時工作面最高產(chǎn)量的主要因素。在這種條件下,僅采用排放煤層瓦斯這一措施來解決盤區(qū)的通風(fēng)問題似乎是不可能的。</p><p> 在瓦斯涌出量不超過40%的高瓦斯礦井中,可以采用直接使回風(fēng)流流入采空區(qū)的盤區(qū)通風(fēng)方式來解決開采期間一些通風(fēng)限制問題。但這種方式實(shí)際上只能在柱式開采法中使用。</p><p> 上述事實(shí)指出,增加柱式開采法的應(yīng)
55、用與直接通風(fēng)方式有關(guān),這種應(yīng)用,對條件是否允許要進(jìn)行考慮并從經(jīng)濟(jì)上加以驗(yàn)證。當(dāng)采用綜合機(jī)械化開采時,深部開采會更完善。</p><p> 雖然在頓茨涅克煤田的許多礦井中增加平均日產(chǎn)量這一問題十分尖銳,但是柱式開采法所占的比例不超過43%,這還包括約占10%的用直接盤區(qū)通風(fēng)方式的柱式開采法在內(nèi)。再者,還存在一種強(qiáng)烈的趨勢,即要求減少深部開采時使用柱式開采法的工作面數(shù)量。因而,在Maxeevugol許多礦井中,從1
56、975至1985年期間,柱式開采的比例由60%降至35%。同期平均開采深度增加了276 m,即達(dá)到1985年的860 m。</p><p> 在整個頓涅茨克煤田,用柱式開采法開采的煤層所占的比例,當(dāng)深度600時為48.2%,深度600~000 m時為40.2%,深度超過1000 m時不超過19%。目前,長壁聯(lián)合開采法在所謂的多種單工作面中得到廣泛應(yīng)用。</p><p> 長壁聯(lián)合開采法
57、在西德深井中普遍采用。1985年后期,采用這種方法的工作面所占的比例超過65%。就商業(yè)用煤所使用的全部開采法而言,長壁聯(lián)合開采法占的比例為62.2%。</p><p> 考慮到在新井或老井改造的礦井中,深部用柱式開采法的比例隨深度下降這一事實(shí),反映了使用過渡的開采法改變礦井的技術(shù)體系以過渡到較深水平這一趨勢。這種趨勢與地下開采技術(shù)改進(jìn)的發(fā)展方向是矛盾的。實(shí)際生產(chǎn)中礦工們常采用一些措施用以預(yù)防巖石跨落。</
58、p><p> 調(diào)查表明,深井中柱式開采法應(yīng)用減少的主要原因是,當(dāng)在較深水平開采時,用柱式開采法維護(hù)采準(zhǔn)巷道地段要比用長壁聯(lián)合法困難。因此,在深度為800~1200 m的礦井中開拓煤層時用于分水平的維護(hù)費(fèi)用,柱式開采法為長壁開采法的1.5~2.5倍。在柱式開采法中缺乏可靠安全的支護(hù)手段,已保證在長壁工作面后方的采準(zhǔn)巷道的穩(wěn)定性。在一定數(shù)量的深井中,這一點(diǎn)成為從前接受回風(fēng)流可流入采空區(qū)的柱式開采法現(xiàn)在又拒絕這種方法的主
59、要原因。隨著開采深度的增加,柱式開采法需要解決防止工作面頂板陷落問題,正是這一點(diǎn)柱式開采遠(yuǎn)比長壁式開采法困難。用柱式開采深部水平時,由于頂板陷落使工作面的無效時間較長壁開采長20~35%。這種無效時間的不同,可以用在臨近巷道的工作面端部頂板控制的不同來加以解釋。用柱式開采法時,用以保護(hù)工作面端部的采準(zhǔn)巷道非煤柱尺寸不應(yīng)超過工作面長度的20~25%,巷道陷落高度可達(dá)整個頂板陷落的45%。而在長壁開采法中此值不超過5~7%。</p&g
60、t;<p> 在非柱式煤層開采發(fā)中,使用長壁系統(tǒng)可以增加與鄰近一側(cè)傾斜方向的回采工作面數(shù)量。以此減少需維護(hù)的主要采準(zhǔn)巷道的長度,從而使柱式開采發(fā)在頓茨涅克深部礦井中的應(yīng)用明顯減少。因而,在用長壁開采各種“工作面水平”的盤區(qū)礦井布置中,可以在同一盤區(qū)的兩翼分別布置兩個工作面。而用柱式開采法則只有當(dāng)掘進(jìn)附加側(cè)翼巷道時才有可能這樣做。</p><p><b> 結(jié)論</b><
61、;/p><p> (1)在采空區(qū)涌出的瓦斯量大這一特點(diǎn)的礦井進(jìn)行深部開采時,只有使用柱式開采才能大大提高工作面平均日產(chǎn)量。柱式開采體系允許使用讓回風(fēng)流通過采空區(qū)的直接盤區(qū)通風(fēng)方式。</p><p> (2)柱式開采法的應(yīng)用隨深度的增加而減少,這主要是由于這種方法缺乏對礦工們的工作場所提供必要的支護(hù)和安全手段,與控制工作面端部巖石冒落的礦壓方法相類似,當(dāng)?shù)坠陌l(fā)生時,這種手段能提高回收煤柱期間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯----研究現(xiàn)代高瓦斯礦井深部開采的關(guān)鍵技術(shù)
- 礦井深部開采支護(hù)技術(shù)研究
- 礦井深部開采支護(hù)技術(shù)研究.pdf
- 煤礦開采外文翻譯
- 金礦開采外文翻譯
- 礦井深部開采礦壓與支護(hù)技術(shù)研究.pdf
- 礦井深部開采通防災(zāi)害預(yù)警控制技術(shù)研究與應(yīng)用.pdf
- 深部煤層開采礦井防治水技術(shù)研究.pdf
- 深部開采分析與研究
- 煤炭開采技術(shù)外文翻譯
- 打造礦山深部開采銳器
- 煤炭開采技術(shù)外文翻譯
- 深部開采中巷道底鼓問題的研究
- 礦井開采課程設(shè)計(jì)
- 2、深部開采中巷道底鼓問題的研究
- 外文翻譯---深部綜放開采頂煤穩(wěn)定性與支架承載研究
- 關(guān)于煤礦深部開采問題的綜合分析
- 分期開采方法和陡幫開采技術(shù)在翁泉溝硼鐵礦的應(yīng)用探討
- 深部開采巖體力學(xué)研究的現(xiàn)狀
- 深部開采地壓控制策略探析
評論
0/150
提交評論