版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> Harvest systems and analysis for herbaceous biomass </p><p><b> Abstract </b></p><p> Biomass feedstocks including crop residues and energy crops hold great potential fo
2、r energy source. They are currently being considered for use in direct combustion systems and for value added byproducts such as biofuels or biocrude. A major roadblock associated with utilization of biomass feedstocks i
3、s the high cost of handling and storage due to low energy and bulk density of these feedstocks. In addition, a wide variety of existing harvest systems creates logistics difficulties for bioenergy </p><p>
4、The utilization of herbaceous biomass requires optimized handling systems to collect, store, and transport year round. This then requires selecting the most economical methods from various existing handling systems for l
5、oose and baled biomass materials. How these different harvesting systems can be integrated into a cost-effective supply system is a challenge. The number of harvest days or the window of harvest depends on the type of cr
6、ops, geographic and climate conditions, soil and nutrient ma</p><p> This chapter will guide readers through the decision process to address the methodology required to design, or specify, a biomass logisti
7、cs system based on the size of the bioenergy plant being supplied. Cost analysis methods and examples are used to demonstrate components of the process that will enable biorefinery industries and landowners to determine
8、the most cost-effective way to harvest, store, and transport biomass feedstocks. </p><p> 1. Introduction </p><p> Biomass is a distributed energy resource. It must be collected from productio
9、n fields and accumulated at storage locations. Previous studies of herbaceous biomass as a feedstock for a bioenergy industry have found that the costs of harvesting feedstocks are a key cost component in the total logis
10、tics chain beginning with a crop on the field and ending with a stream of size-reduced material entering the biorefinery. Harvest of herbaceous biomass is seasonal and the window of harvest is limited. B</p><p
11、> It is convenient to envision the entire biomass logistics chain from fields to biorefineries with three sections. The first section is identified as the “farmgate operations”, which include crop production, harvest
12、, delivery to a storage location, and possible preprocessing at the storage location. This section will be administrated by farm clientele with the potential for custom harvest contracts. The second section is the “highw
13、ay hauling operations,” and it envisions commercial hauling to tra</p><p> Agricultural biomass has low bulk density, and it is normally densified in-field with balers, or chopped with a self-propelled fora
14、ge harvester. Currently, there are four prominent harvesting technologies available for biomass harvesting [1]. They are: (1) round baling, (2) rectangular baling, (3) chopping with a forage harvester, and separate in-fi
15、eld hauling, and (4) a machine that chops and loads itself for in-field hauling (combined operation). Large round and large rectangular balers are tw</p><p> Southeastern United States. Bale compression mac
16、hines are available to compress a large rectangular bale and produce high-density packages [4]. The densified package has two or three times higher density than the field density of large rectangular bales [5].</p>
17、<p> The goal of an effective logistics system is to streamline storage, handling, and preserve the quality of the biomass through the entire logistics chain. This goal will minimize average feedstock cost across
18、 year-round operation. The farmer shares the goal to preserve the quality of the biomass, and also desires to produce the biomass at minimum cost. To assist in the accomplishment of the mutual objectives of both parties,
19、 this chapter will discuss major logistics and machine systems issues sta</p><p> 2. Biomass Harvesting and the Field Performance of Harvest Machine Systems </p><p> 2.1 Harvesting </p>
20、<p> Harvesting of cellulosic biomass, specifically herbaceous biomass, is done with a machine, or more typically a set of machines, that travel over the field and collect the biomass. These machines are designed
21、with the traction required for off-road operation, thus they typically are not well suited for highway operation. Therefore, the transition point between “in-field hauling” and “highway hauling” is critical in the logist
22、ics system. In-field hauling is defined as the operations required to ha</p><p> Harvesting systems can be categorized as coupled systems and uncoupled systems. Ideal coupled systems have a continuous flow
23、of material from the field to the plant. An example is the wood harvest in the Southeast of the United States. Wood is harvested year-round and delivered directly to the processing plant. Uncoupled systems have various s
24、torage features in the logistics system. </p><p> Sugarcane harvesting is an example of a coupled system for herbaceous crops. The sugar cane harvester cuts the cane into billets about 38-cm long and convey
25、s this material into a trailer traveling beside the harvester (Figure 1). The harvester has no on-board storage. Thus, a trailer has to be in place for it to continue to harvest. The trailer, when full, travels to a tran
26、sfer point where it empties into a truck for highway hauling (Figure 2). Each operation is coupled to the operation upstream</p><p> A “silage system” can be used to harvest high moisture herbaceous crops f
27、or bioenergy. With this system, a forage harvester chops the biomass into pieces about one inch (25.4 mm) in length and blows it into a wagon beside the harvester. This wagon delivers directly to a silo (storage location
28、), if the field is close to the silo, or it dumps into a truck for a longer haul to the silo. All operations are coupled. That is, a wagon must be in place to keep the harvester moving, and a truck must be i</p>&
29、lt;p> A coupled system can work very efficiently when an industry is integrated like the sugarcane industry in South Florida, USA. Because the sugar mill owns the production fields surrounding the mill and the roads
30、through these fields, the mill controls all operations (harvesting, hauling, and processing). Sugarcane has to be processed within 24 hours after harvest so the need for a tightly-controlled process is obvious. Fig.1. Su
31、gar cane harvester delivering material into a dump trailer for deliver</p><p> Fig.2.Transfer of sugar cane from in-field hauling trailers to highway-hauling trucks. </p><p> An example of an
32、uncoupled system is cotton production using the cotton harvester that bales cotton into 7.5-ft diameter by 8-ft long round bales of seed cotton. This system was developed to solve a limitation of the module system. With
33、the module system, in-field hauling trailers (boll buggies), have to cycle continuously between the harvester and the module builder at the edge of the field. The best organized system can typically keep the harvester pr
34、ocessing cotton only about 70% of the total</p><p> Baling is an uncoupled harvest system and this offers a significant advantage. Harvesting does not have to wait for in-field hauling. Round bales, which p
35、rotect themselves from rain penetration, can be hauled the next day or the next week. Rectangular bales have to be hauled before they are rained on. </p><p> 2.2 Field Capacity and Efficiency of Biomass Har
36、vest Machines </p><p> The equipment used for baling and in‐field hauling is a critical issue to the farm owners. More efficient harvest systems coupled with well‐matched harvesting technologies specific to
37、 farm size and crop yield can minimize costs. The importance of understanding the linkage between various unit operations in the logistics chain was illustrated [6,7]. Similarly, researchers have quantified the handling
38、and storage costs for large square bales at a bioenergy plant [8]. However, in both of these eval</p><p> The field efficiency of rectangular balers can be determined by calculating the theoretical material
39、 capacity of the baler and actual field capacity [10]. Calculation of material capacity can be demonstrated using a large rectangular baler as an example. The end dimensions of the large bales were 1.20 m × 0.90 m;
40、bale length was 2.44 m. The depth and width of the chamber were 0.9 m and 1.2 m, respectively. Plunger speed was 42 strokes per minute. Measured bale density was 146 kg/m3</p><p> , and the thickness of eac
41、h compressed slice in bale was 0.07 m. Thus, calculated theoretical bale capacity using equation 11.60 in [10] is 27.83 Mg/h. The plunger load could be set higher and produce higher density bales. </p><p>
42、The theoretical capacity was obtained from a baler manufacturer under ideal conditions. Ideal conditions exist when a baling operation has [11]: </p><p> 1) Long straight windrows </p><p> 2)
43、 Windrows prepared with consistent and recommended density (mass/length) </p><p> 3) Properly adjusted and functioning baler </p><p> 4) Experienced operator </p><p> Actual f
44、ield capacity of a baler will be impacted by the size and shape of the field, crop type, yield and moisture content of the crop at harvest, and windrow preparation. Typical field efficiencies and travel speeds can be fou
45、nd from ASAE Standards D497 [12]. Cundiff et al. [11] analyzed the field baler capacity and considered the effect of field size on baler field capacity. They found that the field capacities of round and large rectangular
46、 balers were 8.5 Mg/h and 14.4Mg/h, respectively. </p><p> Another example of testing the baling capacity of a large rectangular would be the field tests conducted on wheat straw and switchgrass fields [13,
47、14]. Results showed that actual field capacity of a large rectangular baler was between 11 and 13 Mg/h. This indicates that the field capacity of a large rectangular baler could be 50% or less compared to its theoretical
48、 capacity. </p><p> 2.3 Power Performance of Harvest Machine Systems </p><p> Machine system field efficiency is limited by tractor power performance, machine field capacity, and field condit
49、ions. Field conditions limit operational parameters and the percentage of the maximum available power. Since the high cost of harvest and in-field handling is still one of the main roadblocks of utilizing biomass feedsto
50、cks to produce biofuels, increasing machine system field efficiency through designing or selecting suitable machine systems is the challenge to machinery design and ma</p><p> Power performance of a 2WD rea
51、r drive tractor was presented in a format of flow chart in ASAE standards [12,15]. Total power required for a tractor is the sum of PTO power,drawbar power , hydraulic power , and electric power as expressed by equation
52、(1). Depending on the type of implement, components in equation (1) may vary. Total power calculated with equation (2) is defined as equivalent PTO power, which can be used to estimate the tractor fuel consumption under
53、specific field operations. </p><p><b> (1) </b></p><p> Where and are mechanical efficiency of the transmission and tractive efficiency, respectively. Each of the power require
54、ments in Equation (1) can be estimated using recommended equations in [12]. Example of using this standard to estimate power requirements for a large rectangular baler system is available [13]. </p><p> 3.
55、References </p><p> [1] Brownell D K, Liu J, Hilton J W, Richard T L, Cauffman G R, and MacAfee B R (2009) </p><p> Evaluation of two forage harvesting systems for herbaceous biomass harvesti
56、ng. ASABE </p><p> Paper No. 097390, St. Joseph, MI: ASABE. </p><p> [2] Reynolds S G, and Frame J (2005) Grasslands: Developments, opportunities, perspectives.</p><p> Enfield,
57、New Hampshire: Science Publ. Inc. </p><p> [3] Cundiff J S, and Grisso R D (2008) Containerized handling to minimize hauling cost of </p><p> herbaceous biomass. Biomass & Bioenergy 32(4):
58、 308-313 </p><p> [4] Hierden E V (1999) Apparatus for processing large square hay bales into smaller </p><p> recompressed Bales. U.S. Patent No. 6339986. </p><p> [5] Steffen S
59、ystems (2009) High Density Bale Compression Systems. Available at: </p><p> http://www.steffensystems.com/Products/Bale_Press/index.htm. Accessed 2012 April 19. </p><p> [6] Sokhansanj S, Turh
60、olow A F, Stephen J, Stumborg M, Fenton J and Mani S (2008) </p><p> Analysis of five simulated straw harvest scenarios. Can. Biosys. Eng. 50:2.27-2.35 </p><p> [7] Sokhansanj S, Turhollow A F
61、 and Wilkerson E G (2008) Development of the Integrated </p><p> Biomass Supply Analysis and Logistics Model (IBSAL). Technical Memorandum </p><p> ORNL/TM-2006/57. Oak Ridge, TN: Oak Ridg
62、e National Laboratory. </p><p> [8] Kumar, P.K., and K.E. Ileleji. 2009. Tech-no-economic analysis of the transportation, </p><p> storage, and handling requirements for supplying lignocellu
63、losic biomass feedstocks for </p><p> ethanol production. ASABE Paper No. 097427, St. Joseph, MI: ASABE. </p><p> [9] Brownell D K (2010) Analysis of biomass harvest, handling, and computer
64、modeling.M.S. </p><p> Thesis. The Pennsylvania State University, University Park, PA. </p><p> [10] Srivastava A K, Carroll E G, Rohrbach R P, and Buchmaster D R (2006) Engineering </p
65、><p> principles of Agricultural Machines. American Society of Agricultural and Biological </p><p> Engineers, St. Joseph, MI: ASABE. </p><p> [11] Cundiff J S, Grisso R D, and McCu
66、llough D (2011) Comparison of bale operations for </p><p> smaller production fields in the Southeast. ASABE Paper No. 1110922. St. Joseph, MI: </p><p><b> ASABE. </b></p>
67、<p> [12] ASAE Standards D497.5 (2006) Agricultural machinery management data. American </p><p> Society of Agricultural Engineers, St. Joseph, MI: ASAE. </p><p> [13] Liu J and Kemmerer
68、 B (2011) Field performance analysis of a tractor and a large square </p><p> baler. SAE Technical Paper 2011-01-2302,Presented at Commercial Vehicle </p><p> Engineering Congress, Chicago, IL
69、 doi:10.4271/2011-01-2302.</p><p> 收獲系統(tǒng)和分析草本植物的產(chǎn)量</p><p><b> 1 摘要</b></p><p> 作物原料包括秸稈和其他有潛在價值的遺留物,現(xiàn)在它們正被考慮煉成生物燃料或生物原油。目前難以實現(xiàn)是因為秸稈熱量值很低但會占用很大的體積。提高了儲存,運輸?shù)某杀?。另外,后勤回收建設(shè)
70、不足導(dǎo)致企業(yè)原料不足。</p><p> 為使秸稈利用達(dá)到最大化,需要高回收效率的體系來收集、儲存、運輸。這就要求我們用所學(xué)到的知識來改良現(xiàn)有的機(jī)器,使其更為經(jīng)濟(jì)。了解收集系統(tǒng)內(nèi)部相互協(xié)調(diào)工作是一項挑戰(zhàn)。確定收獲時間的長度和收獲時間都取決于植物本身、土壤、氣候、肥料等等。收獲時間會影響到產(chǎn)量、收割、儲存的費用。而利用收割機(jī),撿拾打捆機(jī)能提高效率。</p><p> 根據(jù)不同的情況選擇不
71、同設(shè)備,有必要在選擇收割機(jī)前作必要的分析。土地的研究報告通常會作為選擇收割機(jī)和打捆機(jī)的依據(jù)。并且后勤的建立可以使產(chǎn)能達(dá)到最合理化。</p><p> 本章將會指導(dǎo)讀者通過討論來學(xué)習(xí)必要的知識。作物能提供的能量將決定產(chǎn)能設(shè)備系統(tǒng),通過分析,實驗來確定零部件能否達(dá)到工業(yè)生產(chǎn)的要求。教導(dǎo)農(nóng)場主來決定最佳的方法來收割、儲存、運輸秸稈。</p><p><b> 1.1介紹</b
72、></p><p> 生物質(zhì)是一種分布式資源,它必須從生產(chǎn)領(lǐng)域收集積累在存儲位置。收獲的原料成本控制是最大的關(guān)鍵,田間作物進(jìn)入生物煉制時間有限,草本生物量收獲的收獲季節(jié)和窗口也有限的。為使時間能盡量減少,生物需要被存儲在一個中心位置。通常情況下,在一定范圍的中央存儲位置的幾個或許多生物煉制場地需要保證每天24小時不間斷供應(yīng)。這些集中存儲的位置通常被稱為衛(wèi)星倉庫。在一個給定的農(nóng)場,收割機(jī)和成本下,生物煉制廠
73、規(guī)模取決于生物量的可用性。</p><p> 它把如何將田地里的秸稈送往加工廠簡便的分為三個部分。第一部分為“出場”行動,這包括作物生產(chǎn)、收獲、運輸?shù)絻Υ嫖恢眠M(jìn)行預(yù)處理。本節(jié)由客戶與農(nóng)場主面對面交易。第二部分是“公路運輸作業(yè)”,它保證從衛(wèi)星倉庫到加工廠不會浪費時間。第三部分是“接收設(shè)施”,它包括煉制原料管理,庫存控制和控制的商業(yè)運輸合同持有人保證均勻全年運行的作物交付。</p><p>
74、 農(nóng)業(yè)作物具有較低的體積密度,需要加密領(lǐng)域的打包機(jī)或切碎的自走式青貯飼料收獲機(jī)。目前,有四種突出的收獲的機(jī)器可用于生物質(zhì)收獲[1]。它們是:(1)圓形打包機(jī)(2)矩形打包機(jī)(3)切碎與青飼料收獲機(jī)(單獨的現(xiàn)場搬運)。(4)一臺牽引機(jī)。大的圓形和矩形大打包機(jī)是兩個廣泛使用的收獲機(jī)械[2]。它提供了一系列的簡單操作。圓捆打捆機(jī),當(dāng)這些草料在室溫儲存,他們會緊密擠在一塊而縮小空間能使存儲成本顯著降低。圓形打包機(jī),因體積小故障率低??梢栽诙?/p>
75、長時間工作。[3]大的矩形包則有更高的堆積密度,緩解運輸,提高生產(chǎn)力。然而,大型矩形打捆機(jī)成本更高,而且因為無法擺脫水的使用從而限制它在在美國東南部農(nóng)的推廣場[4]。打包壓縮機(jī)可壓縮大矩形包,產(chǎn)生高密度封裝。壓成球形的料包能比矩形的料包密度大2到3倍[5]。</p><p> 一個有效的物流系統(tǒng)的目標(biāo)是在整個物流鏈中簡化存儲、處理。這一目的在于在運行中能將成本控制在最低。農(nóng)民普遍的目標(biāo)是保證生物質(zhì)的質(zhì)量,并希望
76、以最低的成本生產(chǎn)。雙方共同協(xié)助實現(xiàn)目標(biāo),本章將主要的討論生物煉制場的物流和機(jī)械系統(tǒng)的問題,從開始收割到最終煉制。生物質(zhì)供應(yīng)鏈的限制也會被討論。草本生物量收獲的不同情景的影響將被統(tǒng)計。本次物流系統(tǒng)的設(shè)計主要針對農(nóng)業(yè)和森林產(chǎn)品行業(yè)。</p><p> 參照商業(yè)案例的經(jīng)驗教訓(xùn)。一個地區(qū)這類行業(yè)面臨的一個給定的約束(原料的收獲季節(jié))。原材料的體積密度、存儲、貯藏過程中品質(zhì)變化等等。與物流系統(tǒng)進(jìn)行相應(yīng)的設(shè)計。通常,這些系
77、統(tǒng)不可能在具體實施時考慮其他因素,因為設(shè)計師設(shè)計的主要原則是直接適用。其他如商業(yè)等因素不作考慮,但本章將會解釋。</p><p> 2 生物量收獲和收獲機(jī)器系統(tǒng)的現(xiàn)場性能</p><p><b> 2.1 收獲</b></p><p> 纖維素生物質(zhì)收獲,特別是草本生物量,是做了更典型的一組機(jī)器,能開到地里并收集秸稈。機(jī)器運行和田野操作都
78、需牽引,因此它們通常是不適合用于公路營運。因此,將采用單元牽引還是高速牽引在收集系統(tǒng)中備受爭議。需要從地里把秸稈弄到卡車上。還需要卡車把草垛拉上公路再送到倉庫里去。</p><p> 收集系統(tǒng)可分為耦合和非耦合系統(tǒng)。理想的耦合系統(tǒng)有源源不斷的材料,例如從外地來的植物,像美國東南部收獲的木材,全年收獲的木材都會被直接送到加工廠。非耦合的系統(tǒng)的特點是有不同的存儲位置。</p><p> 以
79、加工甘蔗為例,收割機(jī)割甘蔗棒,割成38厘米(如圖1所示),收割機(jī)沒有動力,因此必須要牽引車才能工作。一輛車滿了之后從公路離開。另一輛車接替輛車。要是整體運行起來需要四臺拖拉機(jī)和拖車,司機(jī)當(dāng)然不能少。卡車需要緊緊跟在拖車后面,而且一個小故障就會導(dǎo)致整個系統(tǒng)延誤。</p><p> 一個“青貯飼料系統(tǒng)”可以用來收獲高水分草本作物生物能源。牧草收割機(jī)砍成碎片的生物量約一英寸(25.4毫米) 可以吹進(jìn)旁邊的收割機(jī)。這車
80、可以直接開到筒倉(存儲位置),如果該土地是接近筒倉,就直接有卡車?yán)M(jìn)去避免長途奔波。所有的操作都是連續(xù)的。一輛車必須到位,使收割機(jī)前進(jìn),另一輛卡車必須在田地邊緣等待以保持車輛循環(huán)。而讓所有這些操作協(xié)調(diào)是一個挑戰(zhàn),。</p><p> 一個耦合系統(tǒng)能非常有效地將一個行業(yè)綜合運行。如美國南佛羅里達(dá)州的甘蔗產(chǎn)業(yè)。糖廠有自己的生產(chǎn)基地公路直接通往甘蔗地。工廠把持所有操作(收獲、運輸、加工)。甘蔗在收獲24校內(nèi)就被處理。
81、很明顯這需要嚴(yán)格控制流程。</p><p> 圖1 甘蔗收割機(jī)輸送材料為自卸拖車運送到田邊</p><p> 圖2 拖車將卡車牽引出甘蔗地</p><p> 非耦合系統(tǒng)的是把棉花包成直徑7.5英寸長8英尺的圓捆棉花。該系統(tǒng)為了解決原有系統(tǒng)的局限性即田間牽引拖車,收割機(jī)和在田邊的卡車不斷循環(huán)。最好的組織系統(tǒng)通常可以保持收獲棉花僅占全部農(nóng)田收獲時間的70%。而收割
82、機(jī)等待拖車的時候時間也被浪費了。</p><p> 打包解耦收獲系統(tǒng)提供了一個顯著的優(yōu)勢。收獲時不必等待在田間牽引。圓捆可以保護(hù)它們不被雨水淋濕。你可以第二天甚至下個周再來裝運。但矩形捆就必須在下雨前拉走。</p><p> 2.2田間持水量和生物量收獲機(jī)的效率</p><p> 采用設(shè)備使得農(nóng)場主更加有效地將草料打捆。可以在農(nóng)場生產(chǎn)降低成本。并且要對物流鏈上
83、各單元運作的重要認(rèn)識[6,7]。研究人員在計算能捆成正方形的植物。這些詳細(xì)的評估顯示野外作業(yè)場所涉及的收獲和處理不是機(jī)器能做到的[8]。相反,在農(nóng)場將草料打包可以有效降低生產(chǎn)成本。讓在地里的機(jī)器最大限度的發(fā)揮出效率[9]。農(nóng)場管理員知道每臺機(jī)器參與工作是必不可少的。此外,還要知道機(jī)器每天供給生物煉制廠或倉庫的產(chǎn)量。</p><p> 矩形打包機(jī)的效率可以通過打包機(jī)實際產(chǎn)量和材料產(chǎn)量計算得到[10]。以一個大型方
84、塊壓捆機(jī)的長能為例,大捆端面尺寸分別為1.20米×0.90米,長度為2.44米。深度和寬度分別為0.9米和1.2米。柱塞的速度是每分鐘42桿。測得的草捆密度為146 kg/m3的,每個壓縮包片厚度為0.07 m。理論計算包容量利用等式來完成,柱塞負(fù)荷提高可以產(chǎn)出更高的生產(chǎn)密度。從一個打包機(jī)生產(chǎn)廠家獲得的理論容量[10]。在理想的條件存在時的打包操作有[11]:</p><p><b> 1
85、長直的干草</b></p><p> 2 類似密度的干草(質(zhì)量/長度)</p><p> 3 合適或調(diào)整完的打包機(jī)</p><p><b> 4 熟練的工人</b></p><p> 一個打包機(jī)的實際效率由土地的形狀和大小的影響。收獲的作物,作物類型,產(chǎn)量和水分含量,堆料的制備等。典型的現(xiàn)場效率和行駛
86、速度可以從ASAE標(biāo)準(zhǔn)d497 [ 12 ]中查詢[12]。它分析了撿拾壓捆機(jī)容量和土地大小,田間持水量對壓捆機(jī)的影響[13.14]。研究人員發(fā)現(xiàn),圓形和矩形大打包機(jī)場容量分別為8.5毫克/ 小時和14.4毫克/ 小時。在現(xiàn)場用長方形的打捆機(jī)打包小麥秸稈,柳枝稷。結(jié)果表明,實際容量大的矩形的打包機(jī)是在11到13毫克/小時,這表明一個大矩形壓捆機(jī)的壓捆能力,可能是只是理論容量的50%或更低。 </p><p>&l
87、t;b> 2.3功率的計算</b></p><p> 拖拉機(jī)的動力限制了打捆機(jī)的性能,還有工作的場地、環(huán)境、現(xiàn)場條件、最大可用功率的百分比等。收獲的高成本和現(xiàn)場處理仍然是一個利用生物質(zhì)原料生產(chǎn)生物燃料的主要障礙,通過設(shè)計,管理或選擇合適的機(jī)器,提高工作效率。</p><p> 2WD驅(qū)動拖拉機(jī)的動力性能在ASAE的流程圖上有標(biāo)準(zhǔn),拖拉機(jī)所需的總功率[12],牽引功率
88、與水力發(fā)電,電壓關(guān)系的方程(1)。根據(jù)實施類型,方程(1)中數(shù)據(jù)成分可能會有所不同。用公式計算的總功率(2)為等效功率,可用于特定領(lǐng)域的業(yè)務(wù)在拖拉機(jī)燃油消耗的估計。 </p><p> (1) </p><p> 為傳輸功率,為牽引功率。公式中各電源(1)的估計可使用[ 12 ]。這個標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 草本植物圖譜
- 區(qū)域草本植物調(diào)查分析
- 常見草本植物圖鑒
- 校園常見草本植物辨識
- 常見草本植物圖鑒
- 多年生草本植物
- 草本植物去異味六招
- 喬木、灌木種類以及竹類和草本植物
- 喬木、灌木種類以及竹類和草本植物
- 幾種草本植物護(hù)坡效果評價.pdf
- 草本植物化妝品的市場分析與促銷策略
- 草本植物L(fēng)yocell纖維的制備及其性能研究.pdf
- 常見的水培植物與生長在水里的草本植物
- 基于灰色關(guān)聯(lián)度和主成分分析的草本植物護(hù)坡效果評價.pdf
- 草本植物在地面裝飾中的應(yīng)用研究
- 《外來草本植物普查技術(shù)規(guī)程》編制說明
- 淺談草本植物在園林植物造景中的應(yīng)用
- 草本植物圖像特征提取與分類研究.pdf
- 草本植物根系對植被混凝土基材淺層抗剪強(qiáng)度的影響.pdf
- 58132.山西野生草本植物蚜蟲種類資源調(diào)查與研究
評論
0/150
提交評論