版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、統(tǒng)計物理學(xué)習(xí)講義,中科院數(shù)學(xué)院復(fù)雜系統(tǒng)研究中心復(fù)雜系統(tǒng)學(xué)習(xí)班 (CSSGBJ)韓 靖2003年10月27日,統(tǒng)計物理、自旋玻璃和復(fù)雜系統(tǒng),統(tǒng)計物理做什么?自旋玻璃(Spin Glasses)是什么?它們在復(fù)雜系統(tǒng)研究中有何應(yīng)用?它們的局限性?探討:對我們的研究有何啟發(fā)?,學(xué)習(xí)提綱和計劃 (歡迎補充修改),基本概念介紹Entropy, Boltzmann分布(partition function)Example: K-
2、SAT問題的相變Dynamics and Landscapes各態(tài)歷盡, landscapes, Monte Carlo SimulationExample: Simulated Annealing(模擬退火)Meanfield, Replica Symmetry, Cavity MethodsMeanfield 用于網(wǎng)絡(luò)動力學(xué)的例子Replica Symmetry 用于組合問題的例子Cavity Methods: Sur
3、vey Propagation Critical Phenomena & Power-law相變SOC, HOT/COLD理論,,統(tǒng)計物理,Statistical physics is about systems composed of many parts. 集體行為 組合數(shù)學(xué)和概率理論Traditional examples:氣體、液體、固體 - 原子或分子;金屬、半導(dǎo)體 - 電子;量子場 - 量子,電
4、磁場 - 光子等Complex systems examples:生態(tài)系統(tǒng) - 物種社會系統(tǒng) - 人計算機網(wǎng)絡(luò) - 計算機市場 - 經(jīng)紀人agent魚群 - 魚、鳥群 - 鳥、蟻群 - 螞蟻組合問題 – 變量 –研究復(fù)雜系統(tǒng)為什么要學(xué)習(xí)統(tǒng)計物理?,Collective Behavior 群體行為,集體行為:系統(tǒng)由大量相似的個體組成全局行為不依賴于個體的精確細節(jié),而相互作用必須合理定義,并且不要太復(fù)雜;個體在單獨
5、存在的行為與在整體中的行為很不一樣.(在整體中各個體行為變得相似);相互作用的類型:吸引、抗拒、對齊…主要的集體現(xiàn)象:相變、模式形成、群組運動、同步… 研究手段:統(tǒng)計物理、多主體計算機模擬“磁化”現(xiàn)象:go個體行為 ? 鄰居動作的平均方向同步掌聲恐慌現(xiàn)象,http://angel.elte.hu/~vicsek/,自旋玻璃(Spin Glasses),簡單的理想模型,性質(zhì)豐富,易于研究個體:spin si; 系統(tǒng):多個s
6、pin局部相互作用以最簡單的Ising模型為例:si=1 或者 –1在lattice上排列,相鄰spin之間有相互作用能量(Hamiltonian):E = - ?J(i-1)isi-1siJij>0, 偏好相鄰?fù)?;Jij<0, 偏好相鄰不同向;Jij=0,無相互作用考慮外部場 E = - ?Jijsisj - ?hisi性質(zhì):有序/無序、受挫、相變、對稱破缺…現(xiàn)實中的例子:組合問題、恐慌人群、經(jīng)濟模型,E
7、=- ?Jijsisj,Spin Glass,Configuration r = {s1,s2,…,sn}Hamiltonian (E, Cost function): E(r)J=HJ(r) = -∑JiksiskQuenched variable: J, random variable a probability distribution P(J)Different Spin model: different P(J)N
8、otation:=∑PJ(s)g(s)So-called ‘Disorder’: Structural parameter J is random and have large complexity,自旋玻璃例子- K-SAT問題,經(jīng)典NP-完全問題N個布爾變量: xi=True/False, si=1/-1M個clauses: M個含k個變量的邏輯表達式K=3, 3-SAT: c1:x1 or (not x3) or x8,
9、c2:(not x2) or x3 or (not x4), c3:x3 or x7 or x9,…目標(biāo):滿足所有M個clauses 的 N個布爾變量的一組賦值Spin glass 的能量 E =- ?a=1,M?(Ca =T),Ground State E=-M ?解狀態(tài)結(jié)果:當(dāng)K=3, M/N ~4.25, 問題求解困難,恐慌現(xiàn)象,行人建模:期望移動速度、與他人的排斥力、與墻壁的作用力、個人速度的擾動恐慌
10、(由于火災(zāi)或者大眾心理):人們希望移動更快人與人之間的物理沖突更厲害;出口處障礙、堵塞形成;危險壓力出現(xiàn);人群開始出現(xiàn)大眾恐慌心理;看不到其它的出口;計算機模擬實驗: (Go) 單出口房間:無恐慌、恐慌、驚跑、帶圓柱、火災(zāi)走廊:直走廊、中間加寬的走廊人群:個人主義、群體心理、兩者綜合,Begin…,統(tǒng)計物理能做什么?怎么做?基本點:只關(guān)心狀態(tài)的概率,并不關(guān)心演化的過程(假設(shè)各態(tài)歷經(jīng))熵最大核心: Boltz
11、mann分布 (partition function),學(xué)習(xí)提綱和計劃,基本概念介紹Entropy, Boltzmann分布(partition function)Example: K-SAT問題的相變Dynamics and Landscapes各態(tài)歷盡, landscapes, Monte Carlo SimulationExample: Simulated Annealing(模擬退火)Meanfield, Re
12、plica Symmetry, Cavity MethodsMeanfield 用于網(wǎng)絡(luò)動力學(xué)的例子Replica Symmetry 用于組合問題的例子Cavity Methods: Survey Propagation Critical Phenomena & Power-law相變SOC, HOT/COLD理論,Entropy,Microstate r: a specific configuration of s
13、ystemMacrostate R: an evaluation value?(R): number of microstates related to a macrostateMicro-canonical entropy: S(R)=k log ?(R) More General forms:A macrostate R: {pi} for system be found in a microstate i
14、 A distribution of microstates.Gibbs Entropy: S(R) =-k ∑pi logpi Maximum ? the most possible distribution of microstates Without constraint on pi, pi=1/N ? S is maximized,?({ni})=M!/n1!n2!...n
15、N!, pi=ni/M,,,With Constraint on pi: Partition Function Z,Observable quantity E (Hamiltonian)Ergodic Hypothesis (time average=ensemble average)We know: From experiments: , Ei for all ri, and = = ∑piEi, ∑pi=1.We wa
16、nt to know the most probable distribution of microstates Maximize S=-k∑pilogpi and we get: pi=e-βEi/Z, Z=∑ie-βEi (β=(kT)-1)So, {pi} and β is decided by {Ei} and Knowing βor T and {Ei}, we can define
17、the most possible distribution of microstates {pi} and Zβ? ? T? ? ? ? Z? distribution is less symmetrical,Toy Example,Three microstates: E1=0, E2=2, E3=3We have p1E1+p2E2+p3E3= e.g. 2p2+3p3=, and p1+p2+p3=1 3 tem
18、peratures: decreasing order of T,Important concepts,Partition function: Z(T,E)=∑re- E(r)/T Knowing this, we can do a lot of things!Variance of E, #sol, …Free Energy: F = -k T lnZ (?)Entropy S=- (?F/? T)E=-k ∑piln
19、pi,Z and #sol (ground state),Z (T)=∑re-E(r)/T = ∑H={1,2,…}∑r|E(r)=H e-H/T When T→0, system are most likely in the ground state. e-E(r)/T →0 except E(r)=0Z(0)= ∑ r|E(r)=0 e-0 =∑ r|E(r)=0So, number of ground states = Z(
20、0).In T>0, Z also counts other r that E(r)>0. But the lower T, the r with lower E(r) Z counts. Z is decreasing when T is decreasing.The K-SAT result considers T=0.,學(xué)習(xí)提綱和計劃,基本概念介紹Entropy, Boltzmann分布(partition f
21、unction)Example: K-SAT問題的相變Dynamics and Landscapes各態(tài)歷盡, landscapes, Monte Carlo SimulationExample: Simulated Annealing(模擬退火)Meanfield, Replica Symmetry, Cavity MethodsMeanfield 用于網(wǎng)絡(luò)動力學(xué)的例子Replica Symmetry 用于組合問題的例子
22、Cavity Methods: Survey Propagation Critical Phenomena & Power-law相變SOC, HOT/COLD理論,各態(tài)歷盡,對任意2個系統(tǒng)狀態(tài)r1和r2, r1可以經(jīng)過有限部變換到r2.,00,01,10,11,熵最大分布的三個條件,Rij=probability of ri changes to rj 方程的平衡狀態(tài)是熵最大分布,必須要滿足:p=R
23、83;p, R 有唯一的主特征向量(特征值為1)各態(tài)歷經(jīng)細致平衡:平衡態(tài)時,pi·Rij=pj·Rji,Ergodicity breaking and Landscape,Mapping of microstates onto energies,barrier,r1,r2,r3,rn,…,Very high, unlikely to cross, when system size is large,T is
24、 low:pi/pj=e-(Ei-Ej)/T,Monte Carlo Simulation,設(shè)定狀態(tài)轉(zhuǎn)換矩陣,使得系統(tǒng)演化服從我們希望的狀態(tài)分布 P。如果各態(tài)歷盡和細致平衡,有 把P代入就可以得到Rij,Simulated Annealing,目標(biāo)P是Boltzmann分布:pi?e-Ei/T。Rij/Rji=e-(Ej-Ei)/T Rij= 1if Ej?Ei e-(E
25、j-Ei)/T if Ej>EiSimulated Annealing:We want to minimize ET=0, ergodicity breaking, favors minimal ET>0, barriers can be crossed, favors more states Most problems have many metastable states (local op
26、tima), various scales of barriers heights,,學(xué)習(xí)提綱和計劃,基本概念介紹Entropy, Boltzmann分布(partition function)Example: K-SAT問題的相變Dynamics and Landscapes各態(tài)歷盡, landscapes, Monte Carlo SimulationExample: Simulated Annealing(模擬退火)M
27、eanfield, Replica Symmetry, Cavity MethodsMeanfield 用于網(wǎng)絡(luò)動力學(xué)的例子Replica Symmetry 用于組合問題的例子Cavity Methods: Survey Propagation Critical Phenomena & Power-law相變SOC, HOT/COLD理論,Replica Approach and P(J),For a given J
28、, free energy density:fJ=-1/(βN) ln ZJFor a P(J), we want to know: =∑P(J)fJFor n replicas: Zn=∑JP(J)(ZJ)n≡ (ZJ)n=∑{s1}∑{s2}…∑{sn} exp{-∑a=1nβHJ(sa)}si is the i th replica. fn=-1/(βnN) ln Zn, ln Z= Lim n→0 (Zn-1/n)
29、We get: = Lim n→0 fn ≡f0,參考教材,http://groups.yahoo.com/group/CSSGBJ/Mark Newman 2001 復(fù)雜系統(tǒng)暑期學(xué)校教材 http://www.santafe.edu/~mark/budapest01/ K-SAT相變: Nature, Vol 400, July 1999, p133-137Survey Propagation: Science, Vol 297
30、, Aug. 2002, p812-815, p784-785.SOC: 《大自然如何工作》, Per Bak.HOT/COLD:HOT: Highly Optimized Tolerance: A Mechanism for Power Laws in Designed Systems. J. M. Carlson, John Doyle. (April 27, 1999)COLD: Optimal design, robus
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《統(tǒng)計物理學(xué)教程》漢譯翻譯報告.pdf
- 第四章統(tǒng)計物理學(xué)基礎(chǔ)
- 熱力學(xué)統(tǒng)計物理學(xué)課程教學(xué)大綱
- 熱力學(xué)與統(tǒng)計物理學(xué) 胡承正
- 用統(tǒng)計物理學(xué)方法分析有限增長的BA模型.pdf
- 2017安徽師范大學(xué)考研真題-704統(tǒng)計物理學(xué)
- 第十七章熱力學(xué)與統(tǒng)計物理學(xué)概述
- 統(tǒng)計物理學(xué)在我國股票市場特性研究中的應(yīng)用.pdf
- 概率結(jié)課論文概率論在統(tǒng)計物理學(xué)中的應(yīng)用
- 高中物理學(xué)習(xí)效果自我檢測講義
- ok 費曼物理學(xué)講義1
- 2019年安徽師范大學(xué)考研專業(yè)課704-統(tǒng)計物理學(xué)考研真題
- 物理學(xué)習(xí)方法
- 幾點物理學(xué)習(xí)方法
- 論高中物理學(xué)習(xí)
- 初二物理學(xué)習(xí)筆記
- 初中物理學(xué)習(xí)興趣之我見
- 淺談高中物理學(xué)習(xí)
- 物理學(xué)習(xí)興趣初探.pdf
- 淺談物理學(xué)習(xí)的方法
評論
0/150
提交評論