版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、中國科學(xué)技術(shù)大學(xué)碩士學(xué)位論文MR圖像腦白質(zhì)區(qū)域提取及纖維跟蹤研究姓名:童同申請學(xué)位級別:碩士專業(yè):生物醫(yī)學(xué)工程指導(dǎo)教師:馮煥清;李傳富2011-05-08Abstract III ABSTRACT Human brain is one of the most complicated systems in the world, and the exploration in the mechanism of human brain info
2、rmation processing is also one of the most chanllenging problems among science reserch. The development of modern imaging technique makes the research of human brain in a non-invasive way become available. From previous
3、research based on EEG, MEG and fMRI techniques, it indicates that human brain has different functions in differnt regions, which means “functional segregation“. However, even when the human brain implements an extremely
4、process, it always involves many different regions interacting and cooperating with each other, thereby constructing a network to complete the task, and this is called “functional integration“. As the human brain can be
5、considered as a very complicated network, it is necessary for us to investigate the function of human brain on the basis of network. There were numerous papers about the construction of brain network in recent years, whi
6、ch makes this topic become the most welcomed one among science research. The essential step in the process of constructing the brain network is tracing the white matter bundles, which is called tractography. Therefore, a
7、ccurate tractography is of critical significance for efficient brain network construcation. So far, there are numerous tractography techniques, and they can generally be classified into two catigories: deterministic trac
8、tography and probabilistic tractography. Traditional deterministic tractography is very fast but inaccurate in regions where fibers cross or twist within the voxel. Probabilistic tracking methods are accurate but a time-
9、consuming process and difficult to interpret, making the clinical use unavailable. Therefore, this thesis focused on investigating the latest techniques of tractography and exploring the application of tractography. The
10、major contributions in this thesis are the following points: 1. Considering both the accuracy and speed of the algorithm, in this thesis we proposed a combinatorial method based on a two-tensor model. As the two-tensor m
11、odel is able to address the fiber crossing problem, it will improve the accuracy of the algorithm. Also the deterministic method is very fast so it is possible to decrease the computational time. The proposed Combinatori
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 腦白質(zhì)疏松癥MR圖像配準(zhǔn)及白質(zhì)區(qū)域靜脈分割研究.pdf
- 腦白質(zhì)疏松癥MR圖像病變區(qū)域分割方法研究及量化分析.pdf
- 擴(kuò)散張量成像數(shù)據(jù)處理及腦白質(zhì)纖維跟蹤技術(shù).pdf
- 腦白質(zhì)纖維群智能跟蹤算法研究及可視化系統(tǒng)開發(fā).pdf
- 腦MR圖像分割技術(shù)研究.pdf
- 基于球面反卷積稀疏成像的腦白質(zhì)纖維跟蹤算法研究.pdf
- 基于彌散張量的腦白質(zhì)纖維跟蹤算法的研究與實現(xiàn).pdf
- 兒童腦白質(zhì)病的mr診斷
- 腦白質(zhì)疏松癥的MR擴(kuò)散加權(quán)成像及波譜研究.pdf
- 基于DTI的腦白質(zhì)神經(jīng)纖維跟蹤技術(shù)及其應(yīng)用.pdf
- 腦磁共振圖像的白質(zhì)結(jié)構(gòu)提取——分割算法及其評價.pdf
- MR腦序列圖像自動分割方法研究.pdf
- MR圖像的腦組織分割及GPU硬件加速.pdf
- MR序列腦圖像配準(zhǔn)算法研究與實現(xiàn).pdf
- MR圖像腦組織分割算法的研究與實現(xiàn).pdf
- 基于MR圖像的腦組織分割技術(shù)研究及系統(tǒng)實現(xiàn).pdf
- 正常老年腦及腦白質(zhì)疏松腦白質(zhì)結(jié)構(gòu)的DTI研究.pdf
- 眼前節(jié)OCT與腦MR圖像的分割研究.pdf
- 基于MR腦圖像的腦瘤交互分割算法研究.pdf
- 多分辨率分析下腦MR圖像紋理特征提取和識別.pdf
評論
0/150
提交評論