一種基于判別式聚類的人體行為識(shí)別方法.pdf_第1頁(yè)
已閱讀1頁(yè),還剩81頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、人體行為識(shí)別與視頻分類領(lǐng)域,研究投入逐年增大。近年來(lái),相關(guān)產(chǎn)業(yè)發(fā)展迅猛,如視頻監(jiān)控、智能安防和人機(jī)交互等,人體行為識(shí)別與視頻分類技術(shù)在不久的將來(lái)還將有著更廣闊的市場(chǎng)空間和應(yīng)用前景。行為識(shí)別算法涉及視頻數(shù)據(jù)預(yù)處理、特征提取、特征編碼、數(shù)據(jù)降維、聚類分析、模型學(xué)習(xí)等諸多領(lǐng)域。當(dāng)下行為識(shí)別的研究重心逐漸從底層特征設(shè)計(jì)轉(zhuǎn)移到模型搭建和中層語(yǔ)義特征提取上。本文從中層語(yǔ)義特征角度,對(duì)已有研究成果與現(xiàn)存問(wèn)題予以比較分析和歸納總結(jié),并做出以下工作:

2、r>  首先,本文概括分析了行為識(shí)別中常見(jiàn)的聚類分析算法,針對(duì)經(jīng)典聚類分析算法對(duì)初值敏感、聚類中心數(shù)目需要人為設(shè)定、算法易陷入局部極值、采用歐氏距離不能準(zhǔn)確度量特征相似度等問(wèn)題,給出了一種基于類別的層次聚類分析算法。聚類的目的是為了讓特征空間中聚類團(tuán)簇的類內(nèi)聚合度高而類間差異度大,為此,算法計(jì)算每一類行為在不同聚類中心數(shù)目下,類內(nèi)與類間聚類團(tuán)簇的相似指標(biāo)。本文通過(guò)分析隨聚類中心數(shù)目改變,相似度指標(biāo)的變化趨勢(shì),獲得類內(nèi)聚合度、類間差異度的

3、平衡點(diǎn),這個(gè)平衡點(diǎn)對(duì)應(yīng)的聚類中心數(shù)目就是本文自適應(yīng)聚類分析算法得到的聚類中心數(shù)目。
  其次,筆者還構(gòu)建了判別式聚類分析算法。由于,底層特征、局部特征對(duì)視頻描述力有限,有效信息被淹沒(méi)在海量的冗余數(shù)據(jù)之中,因此對(duì)底層信息的總結(jié)提煉緊迫且重要。為獲取更加有效的中層語(yǔ)義特征,本文提出了判別式聚類分析算法。算法剔除既有聚類團(tuán)簇中的奇異點(diǎn),使聚類中心支撐點(diǎn)純粹度更高。同時(shí),算法對(duì)聚類團(tuán)簇的支撐點(diǎn)數(shù)目提出要求,聚類團(tuán)簇中隸屬于某一行為類別的支

4、撐點(diǎn)數(shù)目越少,則團(tuán)簇聚類中心對(duì)應(yīng)該行為的代表性越弱,算法剔除該聚類中心。因此,添加聚類中心支撐點(diǎn)在對(duì)應(yīng)類別的數(shù)目約束可以強(qiáng)化聚類中心的表達(dá)能力。此外,在迭代過(guò)程中,本文算法還將不斷削去判別性不足的聚類中心及其支撐點(diǎn)。本文判別式聚類分析算法所求取的聚類中心避免了經(jīng)典聚類分析算法的弊端,還具有更加優(yōu)異的判別性、表達(dá)性和行為類別純粹性。
  再次,本文設(shè)計(jì)了聯(lián)合三層語(yǔ)義特征的分類模型,即添加類別約束的隱變量支持向量機(jī)(CC-LSVM,C

5、ategory Constraint Latent Value Support Vector Machine)分類器。為優(yōu)化底層特征、中層語(yǔ)義特征的識(shí)別結(jié)果,本文有針對(duì)性的提出了高層語(yǔ)義特征。因?yàn)?,底層特征進(jìn)行行為識(shí)別和視頻分類是非語(yǔ)義信息到語(yǔ)義信息的跨越,所以,這種跨越易產(chǎn)生“語(yǔ)義鴻溝”。為連接“語(yǔ)義鴻溝”,論文給出了中層語(yǔ)義特征的構(gòu)建方法。為建立語(yǔ)義關(guān)聯(lián),本文提出了能夠綜合運(yùn)用三層語(yǔ)義信息的判別模型CC-LSVM,實(shí)現(xiàn)多層語(yǔ)義行為分

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論