基于核函數(shù)的錯(cuò)誤分類樣例研究.pdf_第1頁
已閱讀1頁,還剩50頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、統(tǒng)計(jì)學(xué)習(xí)理論綜合了機(jī)器學(xué)習(xí)、統(tǒng)計(jì)學(xué)習(xí)、及神經(jīng)網(wǎng)絡(luò)等方面的技術(shù),通過利用結(jié)構(gòu)風(fēng)險(xiǎn)最小化原則,在經(jīng)驗(yàn)風(fēng)險(xiǎn)最小化的同時(shí),有效地提高了算法的泛化能力,并且統(tǒng)計(jì)學(xué)習(xí)理論為機(jī)器學(xué)習(xí)中的小樣本情況提供了有力的理論基礎(chǔ)。
  20世紀(jì)90年代 VaPnik等學(xué)者基于統(tǒng)計(jì)學(xué)習(xí)理論和核技術(shù)提出了一種新的機(jī)器學(xué)習(xí)方法支持向量機(jī)(Support Vector Machine,SVM),該方法是建立在結(jié)構(gòu)風(fēng)險(xiǎn)最小化原則基礎(chǔ)之上的,其核心思想是通過引入核函數(shù)

2、技巧,把低維空間線性不可分問題,映射成高維空間線性可分問題,它能較好的解決非線性、高維識別、小樣本和局部極小點(diǎn)等問題。SVM的發(fā)展,不但豐富和發(fā)展了統(tǒng)計(jì)學(xué)理論,而且在很多應(yīng)用領(lǐng)域得到應(yīng)用和推廣,如:文本分類、手寫體識別、人臉識別、WEB挖掘、回歸分析等。如何進(jìn)一步改進(jìn)支持向量機(jī)的性能,一直以來都是模式識別和機(jī)器學(xué)習(xí)領(lǐng)域關(guān)注和研究的熱點(diǎn)。
  核函數(shù)的支持向量機(jī)在分類和回歸等方面雖然都已經(jīng)取得了很好的效果,但由于人們在利用核函數(shù)的支

3、持向量機(jī)對數(shù)據(jù)分析時(shí),往往只是注意和利用正確的分類數(shù)據(jù)信息,卻忽略了錯(cuò)誤分類數(shù)據(jù)中的有用信息,并且核函數(shù)的支持向量機(jī)的分類效果對核函數(shù)和核參數(shù)的選擇具有很大的依賴性。因此如何利用核函數(shù)來有效地發(fā)掘錯(cuò)誤分類數(shù)據(jù)中的有用信息來提高分類器的分類和預(yù)測能力具有很好的現(xiàn)實(shí)意義。
  本文在核函數(shù)的支持向量機(jī)基礎(chǔ)上,通過利用錯(cuò)誤分類樣例中的有效信息,完成了以下方面的工作:
  1.對支持向量機(jī)理論和算法進(jìn)行了介紹和研究,簡要介紹了核函數(shù)

4、的發(fā)展歷史、理論基礎(chǔ)和基本思想;介紹了機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)理論基本知識。
  2.在核函數(shù)支持向量機(jī)基礎(chǔ)上,提出了一種基于感知器的SVM分類模型(Support Vector Machine Classification based on Perceptron,PSVM),該模型在對分類器的訓(xùn)練中,引入感知器分類思想,其先利用SVM的核函數(shù)進(jìn)行核計(jì)算,判斷其分類性能,分類正確則不做任何修改,反之則轉(zhuǎn)化成感知器分類問題。實(shí)驗(yàn)結(jié)果表明該

5、模型不但能提高 SVM的分類性能,而且還可以降低SVM分類性能對核函數(shù)及參數(shù)選擇的依賴性。
  3.在核函數(shù)支持向量機(jī)基礎(chǔ)上,通過利用差分進(jìn)化算法中的數(shù)據(jù)處理操作,提出了一種基于差分進(jìn)化算法的SVM分類模型(Support Vector Machine Classification based on Differential Evolution,DSVM)。該模型通過利用支持向量機(jī)的支持向量,結(jié)合差分進(jìn)化算法中的數(shù)據(jù)變異、交叉操作

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論