版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、經(jīng)過多年的研究,人工神經(jīng)網(wǎng)絡(luò)的研究已經(jīng)取得了豐碩的成果。然而傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(BP、RBF)的權(quán)值是常數(shù),訓(xùn)練的權(quán)值難以反映樣本的信息,而且傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的模型難以確定,隱層神經(jīng)元個數(shù)需要進(jìn)行反復(fù)試驗(yàn)。文獻(xiàn)[1][2]提出了一種新型的神經(jīng)網(wǎng)路訓(xùn)練算法——樣條權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)訓(xùn)練算法,權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)模型拓?fù)浣Y(jié)構(gòu)簡單,同時該算法還克服了傳統(tǒng)神經(jīng)網(wǎng)絡(luò)容易陷入局部極小、收斂速度慢、難以求得全局最優(yōu)解等缺陷,使得神經(jīng)網(wǎng)絡(luò)研究進(jìn)入了新階段。
2、論文是在樣條權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)訓(xùn)練算法的基礎(chǔ)之上,研究了Fourier權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò),即Fourier級數(shù)作為權(quán)函數(shù)。在理論部分首先構(gòu)造了Fourier權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)模型;其次給出了Fourier權(quán)函數(shù)的確定方法;再次結(jié)合Fourier權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)模型對網(wǎng)絡(luò)誤差進(jìn)行分析,求出網(wǎng)絡(luò)誤差的表達(dá)式;最后通過仿真實(shí)驗(yàn),驗(yàn)證了與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)相比,F(xiàn)ourier權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)具有逼近精度高、訓(xùn)練速度快、泛化能力強(qiáng)等優(yōu)點(diǎn)。
論文將Four
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人工神經(jīng)網(wǎng)絡(luò)及其在圖像識別中的應(yīng)用研究.pdf
- 正交權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)研究及在圖像處理中的應(yīng)用.pdf
- Walsh權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)研究及其應(yīng)用.pdf
- 人工神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用研究.pdf
- 樣條權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)算法研究及其應(yīng)用.pdf
- 深度神經(jīng)網(wǎng)絡(luò)的研究及其在植物葉片圖像識別中的應(yīng)用.pdf
- 連分式權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)研究及其在紋理分類中的應(yīng)用.pdf
- 卷積神經(jīng)網(wǎng)絡(luò)在激光再現(xiàn)防偽圖像識別中的應(yīng)用.pdf
- 復(fù)變權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)研究及其應(yīng)用.pdf
- 脈沖耦合神經(jīng)網(wǎng)絡(luò)在人臉圖像識別中的應(yīng)用研究.pdf
- 有理樣條權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)研究及其在文本分類中的應(yīng)用.pdf
- 卷積神經(jīng)網(wǎng)絡(luò)在圖像識別上的應(yīng)用的研究.pdf
- 樣條權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)的靈敏度分析及其在圖像邊緣檢測中的應(yīng)用.pdf
- 樣條權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)在基坑變形預(yù)測中的應(yīng)用研究.pdf
- 有理權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)研究及其在數(shù)據(jù)挖掘中的應(yīng)用.pdf
- 神經(jīng)網(wǎng)絡(luò)串并聯(lián)學(xué)習(xí)算法在B超圖像識別中的應(yīng)用.pdf
- 最佳有理權(quán)函數(shù)神經(jīng)網(wǎng)絡(luò)研究及其在網(wǎng)絡(luò)擁塞控制技術(shù)中的應(yīng)用.pdf
- 圖像識別中BP神經(jīng)網(wǎng)絡(luò)的硬件實(shí)現(xiàn).pdf
- 基于卷積神經(jīng)網(wǎng)絡(luò)的圖像識別.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的圖像識別技術(shù)的研究.pdf
評論
0/150
提交評論