版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 附錄A</b></p><p> Fuji IGBT Modules Application Manual</p><p> Power converters, such as variable-speed motor drives and uninterruptible power supplies for computers, w
2、ere revolutionized with the introduction of bipolar power tr ansistor modules and power MOSFETs. The demand for compact, lightweight, and ef ficient power converters has consequently also promoted the rapid development o
3、f t hese switching devices. Bipolar transistor modules and MOSFETs however, cannot fully satisfy the demands of these power converters. For example, while bipolar power trans</p><p> Therefore, to satisfy
4、these requirements, the insulated gate bipolar transistor (IG BT) was developed.The IGBT is a switching device designed to have the high-sp eed switching performance and gate voltage control of a power MOSFET as well as
5、the high-voltage / large-current handling capacity of a bipolar transistor.</p><p> Compares the basic structure of an IGBT and a power MOSFET.The IGBT is characterized by a p+-layer added to the drain side
6、 of the power MOSFET structure.It is this p+-layer that enables the various IGBT features explained in this manual.</p><p> As shown in Fig.1-2,the ideal IGBT equivalent circuit is a monolithic Bi-MOS trans
7、istor in which a pnp bipolar transistor and a power MOSFET are darlington connected.Applying a positive voltage between the gate and the emitter,awitches on the MOSFET and produce a low resistance effect between the base
8、 and the collector of pnp transistor,thereby switching it on.</p><p> When the applied votage between the gaate and the emitter is set to”0”,the MOSFET will switch odd, causing the supply of base current t
9、o the pnp transistor to stop and thereby switching that off as well.</p><p> This means that an IGBT can be switched on and off using voltage signals in the same way as a power MOSFET. </p><p>
10、 Like the power MOSFET, a positive voltage between the gate and the emitter produces a current flow through the IGBT, switching it on. When the IGBT is on, positive carriers are injected from the p+-layer on the drain s
11、ide into the n-type bases layer, thereby precipitating conductivity modulation. This enables the IGBT to achieve a much lower on-resistance than a power MOSFET.</p><p> The IGBT has a very low on resistance
12、 for the following reasons:A power MOSFET becomes a single-layer semiconductor (n-type in the diagram) when it is in the on-state, and has resistor characteristics between the drain and the source. The higher the breakdo
13、wn voltage and the device, the thicker the n-layer has to be, but this results in an increased drain-to-source resistance. Thus, as the breakdown voltage increases so does the on-resistance,making it difficult to develop
14、 large capacity power M</p><p> Unlike the power MOSFET, the n-base layer resistance of the IGBT becomes negligible due to the effect of the pn diode formed by the junction of the added p+-layer and n-type
15、base layer when viewed from the drain side. As the ideal equivalent circuit in Fig. 1-2 shows, the IGBT is a monolithic cascade-type Bi-MOS transistor that consists of a pnp bipolar transistor and a power MOSFET connecte
16、d in Darlington form.</p><p> The device can be compared to a hybrid cascade-type Bi-MOS transistor that consists of a bipolar transistor chip and a power MOSFET chip. The major difference is the on-resista
17、nce of the power MOSFET. The on-resistance is extremely small in the IGBT. Considering the chip for inter-chip wiring,the IGBT is superior to the hybrid cascade-type Bi-MOS transistor.</p><p> Fuji Electric
18、 Device technology (FDT) began producing and marketing IGBTs (insulated gate bipolar transistors) in 1988 and has been supplying them to the market ever since. Fig. 1-3 is an overview of the development of, and technolo
19、gies implemented in the first five IGBT generations. FDT succeeded in enhancing the characteristics of the first three IGBT generations, by using epitaxial wafers, optimizing the lifetime control techniques, and by apply
20、ing fine patterning technology.The company was </p><p> The basic design concept of epitaxial wafer-based IGBTs (the third and fourth generations rated at up to 600V, called "punch-through" (PT) I
21、GBTs) is described below. These IGBTs were injected with a carrier at a high level from the collector side so that they would be filled up with the carrier to reduce the on voltage when they are turned on. In order to ob
22、tain this on voltage reduction, an n-buffer layer supporting a higher voltage was built in the FZ wafer to achieve a thinner n-layer. Moreov</p><p> Implementing lifetime control techniques led to increased
23、 on voltage because its effect (reduced carrier transport efficiency) persisted even in the regular on state. FDT initially worked around this problem by pursuing higher-level carrier injection.The basic design concept o
24、f epitaxial wafer-based IGBTs can be simply expressed in the wording "higher-level injection and lower transport efficiency."In contrast, FZ wafer-based IGBTs (fourth-generation 1200V IGBTs and later) implement
25、 the opposite</p><p> FDT has launched a new line of NPT IGBTs that have evolved out of the fourth generation of 1200V IGBTs, as the S-series resolve these tasks.The company has made progress in developing
26、600V IGBTs requiring less thickness to such point that the market release of the 600V U series (fifth generation) is just around the corner. The U-series fifth generation of 1200V IGBTs has advanced from the NPT struc
27、ture to the New FS structure to achieve enhanced characteristics that surpass the S series. Th</p><p> FDT has also pursued a finer-patterned surface structure as a technological prerequisite to enhancing
28、 IGBT characteristics.(Because an IGBT is made up of numerous IGBT blocks, fine patterning should allow a lower on voltage to be attained for more IGBT blocks.) FDT was able to realize more enhanced characteristics with
29、the first four IGBT generations in terms of fine patterning in a planar structure (in which IGBTs are fabricated in a planar pattern).However, the company was able to dramatically</p><p> The most difficult
30、 challenge in producing an IGBT was making gate controlled protection possible. Differing from the ideal equivalent circuit shown in Fig. 1-2, the actual IGBT is a combination of thyristor and MOSFET as shown in Fig. 1-5
31、. The circuit design in Fig. 1-5 has one problem however, if the thyristor is triggered, then the IGBT cannot be turned off. This phenomenon, known as “l(fā)atch-up”, may allow an overcurrent to destroy the device.</p>
32、<p> To prevent this “l(fā)atch-up phenomenon”,the following techniques are used:</p><p> 1) Reducing the base-emitter resistance makes the device less susceptible to latch-up.</p><p> 2)
33、Optimizing the thickness of the n+-buffer layer and the impurity oncentration, allows the of the pnp transistor to be controlled.</p><p> 3) Implementing a lifetime killer, allows the of the pnp transist
34、or to be controlled.</p><p> Using the above techniques, high speed, high voltage and high current IGBTs that don’t latch-up can be produced.</p><p><b> 附錄B</b></p><p>
35、; 富士 IGBT 模塊應(yīng)用手冊</p><p> 電動機可變速驅(qū)動裝置和電子計算機的備用電源裝置等電力變換器,隨著雙極型功率晶體管模塊和功率MOSFET的出現(xiàn),已經(jīng)起了很大的變化。這些使用交換元件的各種電力變換器也隨著近年來節(jié)能、設(shè)備小型化輕量化等要求的提高而急速地發(fā)展起來。但是,電力變換器方面的需求,并沒有通過雙極型功率晶體管模塊和功率 MOSFET 得到完全的滿足。雙極型功率晶體管模塊雖然可以得到高耐壓
36、、大容量的元件,但是卻有交換速度不夠快的缺陷。而功率 MOSFET雖然交換速度足夠快了,但是存在著不能得到高耐壓、大容量元件等的缺陷。</p><p> IGBT(JEDEC登錄名稱,絕緣柵雙極晶體管)正是作為順應(yīng)這種要求而開發(fā)的,它作為一種既有功率MOSFET的高速交換功能又有雙極型晶體管的高電壓、大電流處理能力的新型元件,今后將有更大的發(fā)展?jié)摿Α?lt;/p><p> IGBT 的構(gòu)造
37、和功率 MOSFET的對比如圖 1-1所示。IGBT是通過在功率 MOSFET的漏極上追加 p+層構(gòu)成的,從而具有以下種種特征。</p><p> IGBT的理想等效電路,正如圖1-2所示,是對pnp雙極型晶體管和功率</p><p> MOSFET進行達林頓連接后形成的單片型Bi-MOS晶體管。</p><p> 因此,在門極—發(fā)射極之間外加正電壓使功率MO
38、SFET導(dǎo)通時,pnp晶體管的基極—集電極間就連接上了低電阻,從而使pnp晶體管處于導(dǎo)通狀態(tài)。</p><p> 此后,使門極—發(fā)射極之間的電壓為0V時,首先功率MOSFET處于斷路狀態(tài),pnp晶體管的基極電流被切斷,從而處于斷路狀態(tài)。</p><p> 如上所述,IGBT和功率MOSFET一樣,通過電壓信號可以控制開通和關(guān)斷動作。</p><p> IGBT
39、和功率MOSFET同樣,雖然在門極上外加正電壓即可導(dǎo)通,但是由于通過在漏極上追加p+層,在導(dǎo)通狀態(tài)下從p+層向n基極注入空穴,從而引發(fā)傳導(dǎo)性能的轉(zhuǎn)變,因此它與功率MOSFET相比,可以得到極低的通態(tài)電阻。</p><p> 下面對通過IGBT可以得到低通態(tài)電壓的原理進行簡單說明。</p><p> 眾所周知,功率MOSFET是通過在門極上外加正電壓,使p基極層形成溝道,從而進入導(dǎo)通狀態(tài)
40、的。此時,由于n發(fā)射極(源極)層和n基極層以溝道為媒介而導(dǎo)通,MOSFET的漏極—源極之間形成了單一的半導(dǎo)體(如圖1-1中的 n型)。它的電特性也就成了單純的電阻。該電阻越低,通態(tài)電壓也就變得越低。但是,在MOSFET進行耐高壓化的同時,n基極層需要加厚,(n基極層的作用是在阻斷狀態(tài)下,維持漏極—源極之間所外加的電壓。因此,需要維持的電壓越高,該層就越厚。)元件的耐壓性能越高,漏極-源極之間的電阻也就增加。正因為如此,高耐壓的功率MOS
41、FET的通態(tài)電阻變大,無法使大量的電流順利通過,因此實現(xiàn)大容量化非常困難。</p><p> 針對這一點,IGBT中由于追加了p+層,所以從漏極方面來看,它與n基極層之間構(gòu)成了pn二極管。因為這個二極管的作用,n基極得到電導(dǎo)率調(diào)制,從而使通態(tài)電阻減小到幾乎可以忽略的值。因此,IGBT與MOSFET相比,能更容易地實現(xiàn)大容量化。</p><p> 正如圖 1-2 所表示的理想的等效電路那
42、樣,IGBT是pnp雙極型晶體管和功率MOSFET進行達林頓連接后形成的單片級聯(lián)型Bi-MOS晶體管。此外,IGBT 與雙極型晶體管的芯片和功率MOSFET的芯片共同組合成的混合級聯(lián)型Bi-MOS 晶體管的區(qū)別就在于功率MOSFET部的通態(tài)電阻。在IGBT中功率MOSFET內(nèi)部的通態(tài)電阻變得其微小,再考慮到芯片間需要布線這一點,IGBT比混合級聯(lián)型 Bi-MOS晶體管優(yōu)越。</p><p> 富士電機電子設(shè)備技
43、術(shù)的IGBT技術(shù)從 1988年開始產(chǎn)品化,至今一直在市場上供應(yīng)。圖 1-3 中表現(xiàn)了從第一代到第五代IGBT產(chǎn)品的開發(fā)過程以及運用技術(shù)。第一代至第三代的IGBT中運用了外延片,通過優(yōu)化生命期控制和IGBT的細(xì)微化技術(shù),進行了特性的改善。然后,第四代和第五代產(chǎn)品通過從外延片過渡為FZ(Floating Zone)晶片,實現(xiàn)了大幅度的特性改善。就此,IGBT的設(shè)計方針與從前相比,發(fā)生了很大的轉(zhuǎn)變。</p><p>
44、 首先,運用外延片的IGBT(第三~第四代的600V型為止的系列產(chǎn)品,被稱為“擊穿型”)的基本設(shè)計思想如下所述。IGBT在導(dǎo)通時為了實現(xiàn)低通態(tài)電壓化,從集電極側(cè)注入大量的載流子,使IGBT內(nèi)部充滿高濃度的載流子,再加上為維持高電壓而專門設(shè)置的n緩沖層,形成很薄的n層,從而實現(xiàn)低通態(tài)電壓。為了實現(xiàn)快速交換,也同時采用以IGBT內(nèi)充滿的載流子快速消失為目的的生命期控制技術(shù)(通過這些也能實現(xiàn)低交換損耗(Eoff))。但是,一旦運用了生命期控制
45、技術(shù),即使處于通常的導(dǎo)通狀態(tài),由于該技術(shù)所產(chǎn)生的效果(載流子的輸送效率下降),出現(xiàn)了通態(tài)電壓增加的問題,而通過載流子的更進一步高注入化可以解決這個問題??傊褂猛庋悠夹g(shù)的IGBT的基本設(shè)計理念可以用“高注入、低輸送效率”簡單扼要地概括出來。相對而言,使用FZ晶片的IGBT(第四代1200V以后的系列)采用了抑制來自集電極側(cè)載流子的注入,并通過降低注入效率來提高輸送效率的逆向基本設(shè)計。在前面所述的使用外延片的IGBT的設(shè)計理念“高注
46、入、低輸送效率”中,通過對生命期的控制,強制性地對好不容易注入的載流子進行抑制,這不僅使特性的改善受到了限制,而且通過對生</p><p> 富士電機電子設(shè)備技術(shù)解決了這些課題,從第四代的1200V系-IGBT開始,實現(xiàn)了運用FZ晶片NPT構(gòu)造的“S系列”的產(chǎn)品化。并且,進一步開發(fā)對厚薄度要求更高的600V系列技術(shù),目前正在進行600V-U2系列(第五代)的產(chǎn)品化。此外,在 1200V系—第五代“U系列”中,
47、為了進行更優(yōu)于S系列的性能改善,已經(jīng)在將NPT構(gòu)造改為FS構(gòu)造。</p><p> 所謂FS構(gòu)造,即不運用生命期控制技術(shù),在遵循載流子的“低注入、高輸送效率”的基本設(shè)計理念的同時,在FZ晶片上設(shè)置用以維持電壓的n緩沖層,從而實現(xiàn)比NPT構(gòu)造更薄的IGBT構(gòu)造。通過這種改變,1200V系-U系列實現(xiàn)了優(yōu)于S系列的低通態(tài)電壓特性,并且完成了它的產(chǎn)品化。另外,此項技術(shù)還運用在1700V系的高耐壓系列中,目前也正在著手
48、產(chǎn)品化。</p><p> 另外,富士電機電子設(shè)備技術(shù)也同時在進行著IGBT的特性改善所不可缺的表面構(gòu)造的細(xì)微化(IGBT是由多個IGBT板塊形成的,通過細(xì)微化處理,板塊數(shù)量越多越能實現(xiàn)低通態(tài)電壓)。到第四代產(chǎn)品為止一直是運用平面型構(gòu)造(平面型制作IGBT的構(gòu)造)來推進細(xì)微化,從而進行特性改善的。但是,從第五代產(chǎn)品-1200、1700V系列開始,通過開發(fā)和運用在Si表面開槽并構(gòu)成IGBT的溝槽IGBT技術(shù),打破
49、了細(xì)微化的技術(shù)屏障,實現(xiàn)了前所未有的特性改善。</p><p> 在IGBT的產(chǎn)品化中最大的課題是,在有過電流流過時,通過控制門極來阻斷過電流(進行保護),從而使“在不破壞元件的情況下安全地實施”變得可能。IGBT的實際等效電路圖如圖1-5所示。這與圖1-2的理想等效電路圖不同,是由可控硅和功率MOSFET構(gòu)成的。圖1-5中,一旦可控硅觸發(fā),由于可控硅不會由于門極的阻斷信號等而進行自動消弧,因此IGBT不可能關(guān)
50、斷,導(dǎo)致因過電流而破壞元件(這被稱為“電性栓鎖現(xiàn)象”)。</p><p> IGBT中,為了防止這種“電性栓鎖現(xiàn)象”,充分運用了以下的技術(shù)。</p><p> 1)采用難以產(chǎn)生“電性栓鎖現(xiàn)象”的構(gòu)造(降低圖 1-5 中基極-發(fā)射極間的電阻)。</p><p> 2)通過優(yōu)化n緩沖層的厚度和不純物濃度來控制pnp晶體管的。</p><p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- gps模塊使用手冊
- dataload應(yīng)用手冊
- 系統(tǒng)應(yīng)用手冊
- rego應(yīng)用手冊
- vi應(yīng)用手冊
- 照片管理模塊操作使用手冊
- 素質(zhì)模型應(yīng)用手冊
- word域應(yīng)用手冊
- 富士質(zhì)量手冊手冊
- 工作票系統(tǒng)應(yīng)用手冊
- odoo10應(yīng)用手冊
- 富士lift技術(shù)手冊
- card1 v互通立交模塊使用手冊
- 財務(wù)管理應(yīng)用手冊
- mylifeorganized不完全應(yīng)用手冊
- 鍋爐強度計算標(biāo)準(zhǔn)應(yīng)用手冊
- 理正勘察三維地質(zhì)模塊使用手冊
- 富士康員工手冊
- 企業(yè)職業(yè)病防護應(yīng)用手冊
- 素質(zhì)模型應(yīng)用手冊(能力素質(zhì)模型)
評論
0/150
提交評論