鋼橋類外文翻譯--大跨度鋼橋橋面上環(huán)氧瀝青混凝土鋪裝_第1頁
已閱讀1頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p>  Epoxy asphalt concrete paving on the deck of long-span steel bridges</p><p>  Under the influence of traffic load, wind load, temperature change and other factors, stress and deformation of paving

2、 system is very complicated when paving the long-span orthotropic steel bridge deck. So the weight of the paving structure should be very light and the paving material should have the properties such as high bonding powe

3、r, impermeability, and so on. At present, paving projects are primarily classified into four types: Gussasphalt project, mostly used in Germany and Japan; mastic </p><p>  These years, the construction of lo

4、ng-span bridges in China has developed very fast. Many paving techniques of Japan and England have been adopted in constructing bridges. However, these techniques are not completely applicable for the particular climate

5、and traffic conditions in China. Furthermore, the steel girder box structure, once universally used by foreign countries, has been applied in long-span bridges recently constructed in China, and the highest temperature o

6、f the paving of bridge de</p><p>  According to different purposes, epoxy asphalt can be classified into two types: material for bonding layer (type Id) and for binder (type Ⅴ). Commonly, epoxy asphalt is ma

7、de out of two components: component A (epoxy resin) and component B (homogeneous complex composed by petroleum asphalt and solidified agent). If the two components have bad compatibility, medium should be added.</p>

8、;<p>  Requirements of epoxy asphalt concrete for aggregate are rather strict. Aggregate should be clean, rigid, wear proof and non-acid minerals with 100% broken surface. Its favorite shape should be a cube. Ligh

9、t color is better to reduce the heat caused by solar radiation in high-temperature seasons. Limestone flour is used as filling mineral and contains at least 90% limestone, but none active lime should be used. From the ex

10、perience of key projects and general consideration of all kinds of test in</p><p>  The fatigue life-span of the paving layer could be extended by using fine graded aggregate. However, macroscopic roughness

11、would be reduced accordingly and so would the sliding strength of pavement under moist conditions. After a lot of comparison with the test results, gradation and the forbidden zone of Superpave’s aggregate gradation are

12、shown in Fig. 1</p><p><b>  .</b></p><p>  Fig. 1. Grading design of aggregate for the SNYRB.</p><p>  From the investigation on failures, the loss of the binding power

13、between the paving layers and the steel plate generally takes place between the asphalt mixture and the rustproof layer for the deficiency of binding intensity of the binding layer. Normally, the material for the binding

14、 layer is a heat-sealing binding material, solvent bonder or thermosetting binding material. Based on the results of tests, epoxy asphalt, a kind of thermosetting adhesive material, is chosen for the binding layer </p

15、><p>  To compare the bond strength between the epoxy zinc primer paint or the inorganic silica acid zinc paint and the paving layer, the steel plate is coated respectively with these two rustproof paints in th

16、e tension test. Tests are carried out at low (0±2℃), room (23±2℃) and high temperatures (60±2℃), respectively. The values are 7.13, 1.55 and 0.92 MPa for inorganic silica acid and zinc paint respectively a

17、nd they are 4.24 and 2.23 MPa for the failure plane taking place between the bonder and elon</p><p>  The optimum asphalt applied level for the epoxy asphalt mixture was determined by the Marshall test and o

18、ther material performances were made through the tracking test, soaking Marshall test and so on. To further understand the performance of the epoxy asphalt mixture, several other kinds of asphalt mixtures were tested for

19、 contrast.</p><p>  The void ratio is an important index for the composition design of the epoxy asphalt mixture. The required void ratio is 3% due to the characteristics of the epoxy asphalt mixture. Consid

20、ering that the difference exists between the solidification process in laboratory and paving process in the spot, the optimum ratio of stone to oil was determined to be 6.7% after the performance test on the unsolidified

21、 sample.</p><p>  The intensity of epoxy asphalt concrete was measured by the Marshall test, splitting test, bending test and compression test, respectively. The test results were compared with Gussasphalt c

22、oncrete, SMA and dense-graded modified asphalt concrete.</p><p>  Stability of the Marshall test.By comparing the results of the Marshall test of un-solidified samples with those of the solidified sample (th

23、e average room temperature was 15℃), the stability of the un-solidified sample increased as the time went on. But that of the solidified samples is greater than the un-solidified ones and this is one of the common proper

24、ties of epoxy asphalt concrete, which are different from other common types of the asphalt mixture. It shows that the treatment at a high t</p><p>  The performance test shows that the epoxy asphalt concrete

25、 has good temperature stability (Table 1). The Marshall stability and splitting performance of the solidified sample are much better than those of the un-solidified ones, indicating that high temperature has played an im

26、portant role in the formation of binding strength. Therefore, it is favorable to pave the bridge deck at high temperature.</p><p>  Bending contrast test results of SMA and AC modified asphalt samples are sh

27、own in Table 2. The bending intensity of epoxy asphalt concrete is 16.4 MPa, far greater than that of AC modified asphalt. The deformation degree (deflection at the span center) of the epoxy asphalt concrete is smaller t

28、han that of the other two materials. In addition, at 20℃ the compression intensity is 40 MPa using the uniaxial compression test.</p><p>  Table 1 Results of splitting performance test of solidified epoxy as

29、phalt concrete samples</p><p>  Table 2 Bending test for different kinds of asphalt mixture (at 15℃)</p><p>  Deformability and low temperature properties of epoxy asphalt concrete. Low temperat

30、ure properties and the deformability of the epoxy asphalt concrete asphalt mixture are tested by bending and splitting tests at low temperature. Results of the splitting test at low temperature are shown in Table 3. Cont

31、rasted with SMA and AC modified asphalt mixture, epoxy asphalt mixture performs better at the low temperature. With the decrement of the temperatures, the maximum strain of SMA and AC modified asp</p><p>  A

32、t 60℃ and 70℃, the dynamic stability of the AC modified asphalt mixture is 2193 and 695 (times/mm) and that of SMA is 2562 and 694 (times/mm), respectively. For epoxy asphalt concrete, the deformation at 60℃ is almost 0

33、and the dynamic stability 5460 (times/ mm) at 70℃. Therefore, both the dynamic stability and the temperature property of epoxy asphalt are much better than those of other two kinds of asphalt mixture. At the same time, e

34、poxy asphalt concrete shows super water stability in the so</p><p>  If the thermal shrinkage coefficient of paving layer differs too much from that of the steel plate, cracking and slipping may take place u

35、nder the temperature stress. Because shrinkage often fails in the low-temperature area, the temperature for our experiment is set between -15℃ and 5℃ when the lineal shrinkage coefficient of epoxy asphalt concrete is bet

36、ween (1.3 —2.5 ×10-5)℃ and (1.1 —1.4×10-5)℃ for the steel plate. The difference of the shrinkage coefficient for the paving layer and the stea</p><p>  Researches on indirect tension (splitting) me

37、thods in recent years demonstrated that the indirect tension test can be used to describe the fatigue characteristics of the asphalt mixture. Splitting tests on the epoxy asphalt mixture, SMA, Gussasphalt concrete mixtur

38、e and high grade modified asphalt concrete showed that the fatigue resistance performance of epoxy asphalt is the best.</p><p>  Fatigue performance of epoxy asphalt concrete paving of steel bridge deck can

39、be more accurately reflected when paving layer and the steel plate are considered as a total subject investigated. According to the calculation results of the finite element analysis, maximal tensile stress and tension s

40、train of the paving layer occur on the top of U type rib stiffener (Fig. 2, point A) under traffic load, with their directions vertical to driving course. Ta king point A as the center of a circle, the </p><p&

41、gt;  Table 3 Bending test s for different kinds of asphalt mixture (-15℃)</p><p>  The SNYRB is a continuous box-girder cable-stayed bridge with a total length of 1238 m and a span of 628 m. It is the longes

42、t in China and the 3rd longest in the world in all cable-stayed bridges. Paving technique of the steel bridge deck is a key point of long-span steel bridge construction, which is still not well solved in the world, so th

43、is is the most difficult technique in construction of the SNYRB. All-welded, single box and single compartment box-girder is used in the South Main Bridge o</p><p>  Based on the experiments indoors and outd

44、oors, epoxy asphalt concrete shows obvious advantage when used as paving material of the steel bridge deck. Many in-door research results show that epoxy asphalt concrete has stricter requirements than other mixtures in

45、molding temperature and time, molding process, compactness, etc. What is more, the building of epoxy asphalt concrete should be tested on road before the practical compactness, and further study on construction process a

46、nd quality control </p><p><b>  文獻(xiàn)翻譯</b></p><p>  大跨度鋼橋橋面上環(huán)氧瀝青混凝土鋪裝 </p><p>  大跨度鋼橋橋面鋪裝在交通荷載、風(fēng)荷載、溫度變化等因素的作用下,對橋面鋪裝體系的應(yīng)力和變形非常復(fù)雜。所以鋪裝結(jié)構(gòu)的重量應(yīng)該很輕而且鋪路材料應(yīng)具備粘合力,高抗?jié)B性等性能。目前,鋪設(shè)項目主

47、要分為四種類型:澆注式瀝青混凝土工程,主要用在德國和日本;瀝青瑪蹄脂項目,通常在英國;瀝青瑪蹄脂碎石(SMA),一種最近在德國和日本的改性瀝青;環(huán)氧瀝青,大多在美國采用。環(huán)氧瀝青混凝土是一種在熱固性環(huán)氧樹脂,在瀝青中加入高強(qiáng)度彈性材料和固化劑。作為鋼橋面的環(huán)氧瀝青鋪裝材料,主要用于美國,加拿大和澳大利亞,尤其是在美國。但在中國這種材料直到應(yīng)用在SNYRB之后才被用于橋面鋪裝。</p><p>  這些年來,在中國

48、的大跨度橋梁的建設(shè)發(fā)展很快。許多日本和英國的攤鋪工藝已在橋梁建設(shè)采用。然而,在中國的特定氣候、交通條件下這些技術(shù)并不完全適用。此外,自從鋼箱梁結(jié)構(gòu)被國外普遍使用后,中國最近的構(gòu)造就已應(yīng)用于大跨度橋梁,而且在中國大部分地區(qū)的最高溫度可達(dá)到70℃的情況下的橋面鋪裝。因此,鋪路的材料必須具有較高的溫度穩(wěn)定性。許多橋梁的鋪裝層被投入使用后不久后就已損壞。事實上,鋼橋面鋪裝技術(shù)在很大程度上依賴于鋼橋面鋪裝結(jié)構(gòu)和自然環(huán)境。中國對鋼橋面鋪裝系統(tǒng)的深入

49、研究是非常有限的。在本文中,首先系統(tǒng)地研究了環(huán)氧瀝青混凝土的組成設(shè)計,其特點和混合料的使用性能,對鋼板的環(huán)氧瀝青混凝土的粘結(jié)性能,由鋼板和環(huán)氧瀝青混凝土復(fù)合梁的疲勞試驗的形成。此外,環(huán)氧瀝青混凝土成功應(yīng)用于SNYRB的鋼橋面鋪裝,而且在橋梁的鋪裝層已投入使用一年以上后表現(xiàn)出優(yōu)良的性能。</p><p>  根據(jù)不同的用途,環(huán)氧瀝青可分為兩種類型:粘結(jié)層材料(類型)和粘合劑(型Ⅴ)。通常,環(huán)氧瀝青是由兩部分組成:組

50、件A(環(huán)氧樹脂)和組件B(用石油瀝青的組成和固化劑均勻的復(fù)合物)。如果這兩個組件的兼容性差,介質(zhì)應(yīng)增加。 </p><p>  聚合環(huán)氧瀝青混凝土的要求是相當(dāng)嚴(yán)格的。骨料應(yīng)清潔,剛性,耐磨和非酸礦物100%破裂面。它最好的形狀應(yīng)該是一個立方體。光亮的顏色是更好的減少在高溫季節(jié)太陽輻射引起的熱。石灰石粉作為填充礦產(chǎn)和含有至少90%的石灰石,但不應(yīng)使用活性石灰。從重點項目和各種試驗指標(biāo)綜合考慮經(jīng)驗(大多數(shù)測試是洛杉磯

51、磨耗試驗),在句容的華商山選擇的玄武巖為SNYRB骨料。 所有特性試驗結(jié)果如下:洛杉磯磨耗損失總量106 %(500后的旋轉(zhuǎn)周期),墜毀的值是8.6%,磨光值(PSV)為52,吸水率為1%,抗壓強(qiáng)度為138 MPa,結(jié)合功率級,砂當(dāng)量為50和細(xì)長扁平顆粒形成的比例不超過2.65%。 </p><p>  對鋪裝層的疲勞壽命可以延長使用細(xì)級配集料。然而,宏觀粗糙度也會相應(yīng)減少,因此會滑路面強(qiáng)度在潮濕條件下。大量的試

52、驗結(jié)果比較后,級配和級配禁區(qū)的圖1所示。 </p><p>  圖1 snyrb的級配總設(shè)計</p><p>  從失敗的調(diào)查,鋪裝層與鋼板通常發(fā)生的瀝青混合料與結(jié)合層結(jié)合強(qiáng)度不足的防銹層之間的結(jié)合力的損失。通常,對粘結(jié)層材料是一種熱密封粘結(jié)材料,溶劑粘結(jié)劑或熱固性粘合材料。根據(jù)試驗結(jié)果,環(huán)氧瀝青,一種熱固性粘合劑材料,被選定為snyrb結(jié)合層。環(huán)氧瀝青具有很好的強(qiáng)度和伸長率的能力。在23

53、℃,抗拉強(qiáng)度為8.1 MPa,斷裂伸長率為23.2%。在剪切試驗的控制板,剪切強(qiáng)度為6.84 MPa和100 MPa。結(jié)果表明,環(huán)氧瀝青混凝土的強(qiáng)度是大于任何其他材料結(jié)合。</p><p>  比較了環(huán)氧富鋅底漆、無機(jī)硅酸鋅涂料和鋪裝層之間的粘結(jié)強(qiáng)度,鋼板表面涂防銹漆中分別與這兩個拉伸試驗。測試是在低進(jìn)行(0±2℃),室(23±2℃)和高溫(60±2℃),該值分別為是7.13MPa,

54、1.55MPa和0.92 MPa的無機(jī)硅酸鋅涂料分別是4.24和2.23 MPa的破壞面發(fā)生之間的粘結(jié)劑和伸長點和不小于0.97 MPa的環(huán)氧富鋅底漆。結(jié)果表明,環(huán)氧富鋅底漆涂料具有良好的結(jié)合強(qiáng)度與鋪層。此外,樣品的所有故障的飛機(jī)沒有鋪裝層之間發(fā)生,這表明層間結(jié)合強(qiáng)度是足夠的,可靠的橋面鋪裝鋪兩層分別。</p><p>  最佳瀝青的環(huán)氧瀝青混合料的應(yīng)用水平的馬歇爾試驗和其他材料性能的測定通過跟蹤試驗,浸水馬歇爾

55、試驗等。為了進(jìn)一步了解環(huán)氧瀝青混合料的性能,瀝青混合料的一些其他種類進(jìn)行對比。</p><p>  空隙率對環(huán)氧瀝青混合料組成設(shè)計的一個重要指標(biāo)。所需的空隙率為3%的環(huán)氧瀝青混合料的特性??紤]到在實驗室的凝固過程和鋪在現(xiàn)場過程之間存在的差異,確定在未固化的樣品的性能測試后6.7%是石油的最佳配比。</p><p>  強(qiáng)度環(huán)氧瀝青混凝土的馬歇爾測量試驗,劈裂試驗,彎曲試驗和壓縮試驗,分別。

56、測試結(jié)果與澆注式瀝青混凝土進(jìn)行了對比,SMA與密級配瀝青混凝土。</p><p>  通過比較聯(lián)合國的馬歇爾試驗結(jié)果凝固試樣與固化的樣品(室平均溫度15℃),聯(lián)合國的穩(wěn)定固化的樣品隨著時間的推移增加。但是,固化后的樣品比聯(lián)合國,這是一個固化的環(huán)氧瀝青混凝土的性能,這是不同于其他的瀝青混合料的常見類型。結(jié)果表明,高溫處理具有良好的機(jī)械性能的影響環(huán)氧瀝青混凝土。</p><p>  性能測試表

57、明環(huán)氧瀝青混凝土具有良好的溫度穩(wěn)定性(表1)。馬歇爾穩(wěn)定度和固化的樣品分離性能優(yōu)于聯(lián)合國的凝固,表明高溫中發(fā)揮了重要的作用形成的結(jié)合強(qiáng)度。因此,它有利于鋪橋面高溫。</p><p>  彎曲SMA對比試驗結(jié)果和交流改性瀝青樣品,如表2所示。環(huán)氧瀝青混凝土的彎曲強(qiáng)度為16.4 MPa,遠(yuǎn)高于AC改性瀝青。變形程度(在跨中撓度)的環(huán)氧瀝青混凝土比其他兩種材料。此外,在20℃壓縮強(qiáng)度40MPa使用單軸壓縮試驗。 &

58、lt;/p><p>  表1 固化環(huán)氧瀝青混凝土樣品裂解性能測試結(jié)果</p><p>  表2彎曲試驗對不同類型的瀝青混合料(15℃) </p><p>  低溫性能的環(huán)氧瀝青混凝土瀝青變形混合物是由彎曲和劈裂試驗在低的測試溫度。低溫劈裂試驗結(jié)果如表3所示。與SMA與AC改性瀝青混合料,環(huán)氧瀝青混合料具有較好的低溫。隨著溫度的降低,最大應(yīng)變的SMA與AC改性瀝青混合料的

59、下降在更大程度上比環(huán)氧瀝青(對比試驗結(jié)果在15℃)。</p><p>  在60℃和70℃,動態(tài)的AC改性瀝青混合料的穩(wěn)定性是2193695(次/mm),SMA是2562和694(次/mm),分別為。環(huán)氧瀝青混凝土,其在60℃變形幾乎為0,動態(tài)穩(wěn)定性5460(次/mm)在70℃。因此,無論是動態(tài)的穩(wěn)定性和環(huán)氧瀝青的溫度特性比其他兩種瀝青混合料的要好的多。同時,環(huán)氧瀝青混凝土具有超級在浸水馬歇爾試驗水穩(wěn)定性。因此,

60、環(huán)氧瀝青混凝土具有更好的抗水損害。</p><p>  如果鋪裝層相差太多,從鋼板的熱收縮系數(shù),溫度應(yīng)力裂縫和滑移可能發(fā)生在。因為收縮往往在低溫區(qū)失敗,我們的實驗溫度設(shè)定為15℃和5℃時環(huán)氧瀝青混凝土的線收縮系數(shù)之間-(1.3 - 2.5×10-5)℃和(1.1 - 1.4×10-5)℃為鋼板。對鋪裝層的收縮系數(shù)的差異和鋼板不太大,尤其是在一個特別低的溫度下,特別是在幾乎是0℃時。</p

61、><p>  間接張力(分裂)近年來的研究方法表明,間接拉伸試驗可用來描述瀝青混合料的疲勞特性。劈裂試驗對環(huán)氧瀝青混合料,SMA,澆注式瀝青混凝土混合物和高等級瀝青混凝土表明,環(huán)氧瀝青混凝土的抗疲勞性能是最好的。 </p><p>  環(huán)氧瀝青混凝土鋪裝鋼橋疲勞性能可以得到更準(zhǔn)確的反映在鋪裝層與鋼板看作一個整體,研究對象。根據(jù)有限元分析計算結(jié)果,對鋪裝層出現(xiàn)U型加勁肋頂部的最大拉伸應(yīng)力和拉伸應(yīng)

62、變(圖2,A點)交通荷載作用下,其方向垂直于駕駛課程。以點為圓心,用300mm的跨度的梁和100mm寬的橋面上截獲。負(fù)載和支持,如圖2所示。在疲勞試驗的加載力可以分解為基于應(yīng)力,即,對復(fù)合梁的鋪裝層最大拉應(yīng)力對鋪裝層的橋梁,平等。當(dāng)疲勞試驗載荷5kN,梁加載波形正弦,和加載頻率為10 Hz,復(fù)雜的梁2顯示在18℃在循環(huán)載荷5 kN室溫?zé)o損傷,12000000倍的最大值,表明環(huán)氧瀝青混凝土鋪裝設(shè)計系統(tǒng)可以滿足業(yè)務(wù)和在室溫下15年負(fù)荷的要求

63、。</p><p>  為了進(jìn)一步檢驗了橋面的過載性能,利用復(fù)合梁4。它還不在18℃室溫?fù)p壞時,加載力增加到6kN(最小值還是0.5kN)和6kN負(fù)載保持12000000次循環(huán)和常數(shù)。5裂縫復(fù)雜梁在跨中后循環(huán)加載12kN和0.5kN,85000倍最小值最大值。復(fù)梁6裂的在跨中最大值10kN和0.5kN,480000次循環(huán)加載后的最小值。 </p><p>  表3彎曲試驗對不同類型的瀝青混

64、合料(15℃)</p><p>  SNYRB,全長1238m,跨度628m。這是中國最長的也是世界第三長的連續(xù)箱梁電纜斜拉橋。鋼橋面鋪裝技術(shù)是大跨度鋼箱梁橋施工,這仍然是在世界上沒有很好解決的一個關(guān)鍵點,所以這是在建設(shè)的SNYRB的最困難的技術(shù)。南主橋采用的是全焊接,單箱單室箱梁是在SNYRB南主橋。橋面鋼箱梁正交異性板結(jié)構(gòu),厚度為14mm。鋪路材料的設(shè)計溫度范圍為-15℃±70℃。根據(jù)流量分析和超載

65、20%估算,日均客流量,流動密度每年在未來15年的SNYRB預(yù)計將39000的中型車輛。鋪路材料的SNYRB是環(huán)氧瀝青混凝土路面結(jié)構(gòu)層的厚度為50mm。SNYRB是大跨徑鋼橋面環(huán)氧瀝青混凝土上使用的第一個例子。為了保證攤鋪質(zhì)量兩層25mm奠定的bridze表面,0.45 L/㎡環(huán)氧瀝青兩層之間的傳播,為更好的固定。鋼橋面環(huán)氧瀝青之間的粘合材料是環(huán)氧瀝青混合料的密度為0.68 L/㎡。被選擇作為環(huán)氧鋅底漆的厚度為40-80mm的防銹涂料。

66、特殊的防水層在橋面鋪裝的防水材料,粘結(jié)層和油漆防銹功能的系統(tǒng),因為設(shè)計的。2000年3月26日投入使用的SNYRB。橋面環(huán)氧瀝青混凝土鋪裝的工作非常出色,在低溫-14℃和+68℃的高溫,現(xiàn)在</p><p>  在實驗的基礎(chǔ)上,室內(nèi)和室外,環(huán)氧樹脂瀝青混凝土表現(xiàn)出明顯的優(yōu)勢,使用時作為道路的鋼橋面鋪裝材料。許多門研究結(jié)果表明,環(huán)氧瀝青混凝土更嚴(yán)格的要求比成型溫度和時間,其他混合物的成型工藝,結(jié)構(gòu)緊湊等,更甚的是環(huán)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論