建筑環(huán)境與設(shè)備工程(暖通)外文翻譯---未來的熱舒適性——優(yōu)越性和期望值_第1頁
已閱讀1頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  南京工程學(xué)院</b></p><p>  Nanjing Institute Of Technology</p><p>  畢業(yè)設(shè)計英文資料翻譯</p><p>  The Translation Of The English Material Of Graduation Design</p>

2、<p>  學(xué)生姓名: 學(xué) 號 : 000000000 </p><p>  Name: Number: 000000000 </p><p>  班 級: K暖通091 </p><p>  Class:

3、 K-Nuantong 091 </p><p>  所在學(xué)院: 康尼學(xué)院 </p><p>  College: Kangni College </p><p>  專 業(yè): 建筑環(huán)境與設(shè)備工程

4、 </p><p>  Profession: Building Environment and Equipment Engineering </p><p>  指導(dǎo)教師: </p><p>  Tutor:

5、 </p><p>  2013年 02月 25日</p><p><b>  英文:</b></p><p>  Thermal comfort in the future - Excellence and expectation</p><p>  P. Ole Fanger and Jørn T

6、oftum</p><p>  International Centre for Indoor Environment and </p><p>  Energy Technical University of Denmark</p><p><b>  Abstract</b></p><p>  This paper

7、 predicts some trends foreseen in the new century as regards the indoor environment and thermal comfort. One trend discussed is the search for excellence, upgrading present standards that aim merely at an “acceptable” co

8、ndition with a substantial number of dissatisfied. An important element in this connection is individual thermal control. A second trend is to acknowledge that elevated air temperature and humidity have a strong negative

9、 impact on perceived air quality and ventilation r</p><p>  Keywords: PMV, Thermal sensation, Individual control, Air quality, Adaptation</p><p>  A Search for Excellence</p><p>  P

10、resent thermal comfort standards (CEN ISO 7730, ASHRAE 55) acknowledge that there are considerable individual differences between people’s thermal sensation and their discomfort caused by local effects, i.e. by air movem

11、ent. In a collective indoor climate, the standards prescribe a compromise that allows for a significant number of people feeling too warm or too cool. They also allow for air velocities that will be felt as a draught by

12、a substantial percentage of the occupants.</p><p>  In the future this will in many cases be considered as insufficient. There will be a demand for systems that allow all persons in a space to feel comfortab

13、le. The obvious way to achieve this is to move from the collective climate to the individually controlled local climate. In offices, individual thermal control of each workplace will be common. The system should allow fo

14、r individual control of the general thermal sensation without causing any draught or other local discomfort.A search for exce</p><p>  Thermal Comfort and IAQ</p><p>  Present standards treat th

15、ermal comfort and indoor air quality separately, indicating that they are independent of each other. Recent research documents that this is not true . The air temperature and humidity combined in the enthalpy have a stro

16、ng impact on perceived air quality, and perceived air quality determines the required ventilation in ventilation standards. Research has shown that dry and cool air is perceived as being fresh and pleasant while the same

17、 composition of air at an elevated</p><p>  PMV model and the adaptive model</p><p>  The PMV model is based on extensive American and European experiments involving over a thousand subjects exp

18、osed to well-controlled environments. The studies showed that the thermal sensation is closely related to the thermal load on the effector mechanisms of the human thermoregulatory system. The PMV model predicts the therm

19、al sensation as a function of activity, clothing and the four classical thermal environmental parameters. The advantage of this is that it is a flexible tool that includes </p><p>  Field studies in warm cli

20、mates in buildings without air-conditioning have shown, however, that the PMV model predicts a warmer thermal sensation than the occupants actually feel. For such non-air-conditioned buildings an adaptive model has been

21、proposed. This model is a regression equation that relates the neutral temperature indoors to the monthly average temperature outdoors. The only variable is thus the average outdoor temperature, which at its highest may

22、have an indirect impact on the huma</p><p>  Why then does the PMV model seem to overestimate the sensation of warmth in non-air-conditioned buildings in warm climates? There is general agreement that physio

23、logical acclimatization does not play a role. One suggested explanation is that openable windows in naturally ventilated buildings should provide a higher level of personal control than in air-conditioned buildings. We d

24、o not believe that this is true in warm climates. Although an openable window sometimes may provide some control of ai</p><p>  Another factor suggested as an explanation to the difference is the expectation

25、s of the occupants. We think this is the right factor to explain why the PMV overestimates the thermal sensation of occupants in non-air-conditioned buildings in warm climates. These occupants are typically people who ha

26、ve been living in warm environments indoors and outdoors, maybe even through generations. They may believe that it is their “destiny” to live in environments where they feel warmer than neutral. This m</p><p&g

27、t;  For non-air-conditioned buildings, the expectancy factor is assumed to depend on the duration of the warm weather over the year and whether such buildings can be compared with many others in the region that are air-c

28、onditioned. If the weather is warm all year or most of the year and there are no or few other air-conditioned buildings, e may be 0.5, while it may be 0.7 if there are many other buildings with air-conditioning. For non-

29、air-conditioned buildings in regions where the weather is warm o</p><p>  Table 1. Expectancy factors for non-air-conditioned buildings in warm climates.</p><p>  A second factor that contribute

30、s to the difference between the PMV and actual thermal sensation in non-air-conditioned buildings is the estimated activity. In many field studies in offices, the metabolic rate is estimated on the basis of a questionnai

31、re identifying the percentage of time the person was sedentary, standing, or walking. This mechanistic approach does not acknowledge the fact that people, when feeling warm, unconsciously tend to slow down their activity

32、. They adapt to the warm envi</p><p>  To examine these hypotheses further, data were downloaded from the database of thermal comfort field experiments. Only quality class II data obtained in non-air-conditi

33、oned buildings during the summer period in warm climates were used in the analysis. Data from four cities (Bangkok, Brisbane, Athens, and Singapore) were included, representing a total of more than 3200 sets of observati

34、ons . The data from these four cities with warm climates were also used for the development of the adaptive mode</p><p>  For each set of observations, recorded metabolic rates were reduced by 6.7% for every

35、 scale unit of PMV above neutral, i.e. a PMV of 1.5 corresponded to a reduction in the metabolic rate of 10%. Next, the PMV was recalculated with reduced metabolic rates using ASHRAE’s thermal comfort tool . The resultin

36、g PMV values were then adjusted for expectation by multiplication with expectancy factors estimated to be 0.9 for Brisbane, 0.7 for Athens and Singapore and 0.6 for Bangkok. As an average for eac</p><p>  Co

37、mparison of observed mean thermal sensation with predictions made using the new extension of the PMV model for non-air-conditioned buildings in warm climates. The lines are based on linear regression analysis weighted ac

38、cording to the number of responses obtained in each building.</p><p>  Table 2. Non-air-conditioned buildings in warm climates. </p><p>  Comparison of observed thermal sensation votes and predi

39、ctions made using the new extension of the PMV model.</p><p>  The new extension of the PMV model for non-air-conditioned buildings in warm climates predicts the actual votes well. The extension combines the

40、 best of the PMV and the adaptive model. It acknowledges the importance of expectations already accounted for by the adaptive model, while maintaining the PMV model’s classical thermal parameters that have direct impact

41、on the human heat balance. It should also be noted that the new PMV extension predicts a higher upper temperature limit when the expecta</p><p>  Further analysis would be useful to refine the extension of t

42、he PMV model, and additional studies in non-air-conditioned buildings in warm climates in different parts of the world would be useful to further clarify expectation and acceptability among occupants. It would also be us

43、eful to study the impact of warm office environments on work pace and metabolic rate.</p><p>  Conclusions</p><p>  The PMV model has been validated in the field in buildings with HVAC systems,

44、situated in cold, temperate and warm climates and studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may perceive the warmth as being less severe than the PMV predicts, du

45、e to low expectations.</p><p>  An extension of the PMV model that includes an expectancy factor is proposed for use in non-air-conditioned buildings in warm climates.</p><p>  The extended PMV

46、model agrees well with field studies in non-air-conditioned buildings in warm climates of three continents.</p><p>  Thermal comfort and air quality in a building should be considered simultaneously. A high

47、perceived air quality requires moderate air temperature and humidity.</p><p>  Acknowledgement</p><p>  Financial support for this study from the Danish Technical research Council is gratefully

48、acknowledged.</p><p>  References</p><p>  Andersson, L.O., Frisk, P., Löfstedt, B., Wyon, D.P., (1975), Human responses to dry, humidified and intermittently humidified air in large office

49、 buildings. Swedish Building Research Document Series, D11/75.</p><p>  ASHRAE 55-1992: Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-conditioning E

50、ngineers, Inc.</p><p>  Baker, N. and Standeven, M. (1995), A Behavioural Approach to Thermal Comfort Assessment in Naturally Ventilated Buildings. Proceedings from CIBSE National Conference, pp 76-84.</p

51、><p>  Brager G.S., de Dear R.J. (1998), Thermal adaptation in the built environment: a literature review. Energy and Buildings, 27, pp 83-96.</p><p>  Cena, K.M. (1998), Field study of occupant co

52、mfort and office thermal environments in a hot-arid climate. (Eds. Cena, K. and de Dear, R.). Final report, ASHRAE 921-RP, ASHRAE Inc., Atlanta.</p><p>  de Dear, R., Fountain, M., Popovic, S., Watkins, S.,

53、Brager, G., Arens, E., Benton, C., (1993a), A field study of occupant comfort and office thermal environments in a hot humid climate. Final report, ASHRAE 702 RP, ASHRAE Inc., Atlanta.</p><p>  de Dear, R.,

54、Ring, J.W., Fanger, P.O. (1993b), Thermal sensations resulting from sudden ambient temperature changes. Indoor Air, 3, pp 181-192.</p><p>  de Dear, R. J., Leow, K. G. and Foo, S.C. (1991), Thermal comfort i

55、n the humid tropics: Field experiments in air-conditioned and naturally ventilated buildings in Singapore. International Journal of Biometeorology, vol. 34, pp 259-265.</p><p>  de Dear, R.J. (1998), A globa

56、l database of thermal comfort field experiments. ASHRAE Transactions, 104(1b), pp 1141-1152.</p><p>  de Dear, R.J. and Auliciems, A. (1985), Validation of the Predicted Mean Vote model of thermal comfort in

57、 six Australian field studies. ASHRAE Transactions, 91(2), pp 452- 468.</p><p>  de Dear, R.J., Brager G.S. (1998), Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions, 104(1a

58、), pp 145-167.</p><p>  de Dear, R.J., Leow, K.G., and Ameen, A. (1991), Thermal comfort in the humid tropics - Part I: Climate chamber experiments on temperature preferences in Singapore. ASHRAE Transaction

59、s 97(1), pp 874-879.</p><p>  Donini, G., Molina, J., Martello, C., Ho Ching Lai, D., Ho Lai, K., Yu Chang, C., La Flamme, M., Nguyen, V.H., Haghihat, F. (1996), Field study of occupant comfort and office th

60、ermal environments in a cold climate. Final report, ASHRAE 821 RP, ASHRAE Inc., Atlanta.</p><p>  Fang, L., Clausen, G., Fanger, P.O. (1999), Impact of temperature and humidity on chemical and sensory emissi

61、ons from building materials. Indoor Air, 9, pp 193-201.</p><p>  Fanger, P.O. (1970), Thermal comfort. Danish Technical Press, Copenhagen, Denmark.</p><p>  Fouintain, M.E. and Huizenga, C. (199

62、7), A thermal sensation prediction tool for use by the profession. ASHRAE Transactions, 103(2), pp 130-136.</p><p>  Humphreys, M.A. (1978), Outdoor temperatures and comfort indoors. Building Research and Pr

63、actice, 6(2), pp 92-105.</p><p>  Krogstad, A.L., Swanbeck, G., Barregård, L., et al. (1991), Besvär vid kontorsarbete med olika temperaturer i arbetslokalen - en prospektiv undersökning (A pr

64、ospective study of indoor climate problems at different temperatures in offices), Volvo Truck Corp., Göteborg, Sweden.</p><p>  Tanabe, S., Kimura, K., Hara, T. (1987), Thermal comfort requirements duri

65、ng the summer season in Japan. ASHRAE Transactions, 93(1), pp 564-577.</p><p>  Toftum, J., Jørgensen, A.S., Fanger, P.O. (1998), Upper limits for air humidity for preventing warm respiratory discomfort

66、. Energy and Buildings, 28(3), pp 15-23.</p><p><b>  中文:</b></p><p>  未來的熱舒適性——優(yōu)越性和期望值</p><p>  Fanger和Jørn Toftum</p><p>  國際室內(nèi)環(huán)境中心和丹麥能源科技大學(xué)</p>

67、<p><b>  摘要</b></p><p>  本文預(yù)測了一些在新世紀(jì)中可以預(yù)見的熱舒適性以及室內(nèi)環(huán)境的發(fā)展趨勢。討論了探究優(yōu)越性的一種趨勢,提升現(xiàn)在只為達(dá)到一個“可接受”的條件且又有許多令人不滿意的標(biāo)準(zhǔn)。在這一點上獨立的熱控制是一個要素。第二種趨勢是承認(rèn)空氣溫度和濕度的上升對感知到的空氣質(zhì)量和通風(fēng)要求有著很大的負(fù)面影響。作為設(shè)計的基礎(chǔ),未來熱舒適性和室內(nèi)空氣品質(zhì)的標(biāo)準(zhǔn)應(yīng)

68、該包括這些關(guān)系。預(yù)測平均評價模型已經(jīng)在處于寒冷、溫暖以及炎熱的氣候條件下配備暖通空調(diào)系統(tǒng)的建筑中得到驗證,而且研究貫穿了夏季和冬季。處于炎熱氣候條件下非空調(diào)建筑內(nèi)的居住者由于他們較低的期望值,感受到的溫度可能不像預(yù)測平均評價中預(yù)測的那么高。涵蓋了期望因素的預(yù)測平均評價拓展模型被提議在炎熱氣候條件下非空調(diào)建筑中運用。預(yù)測平均評價拓展模型與在三大洲的非空調(diào)建筑中的實地研究十分匹配。</p><p>  關(guān)鍵詞:預(yù)測平

69、均評價模型,熱感受,單獨控制,空氣品質(zhì),適應(yīng)性</p><p>  一項追求優(yōu)越性的研究</p><p>  目前的熱舒適性標(biāo)準(zhǔn)(歐洲標(biāo)準(zhǔn)化委員會 ISO 7730, 美國采暖、制冷與空調(diào)工程師學(xué)會 55)承認(rèn)人們的熱感受和他們由于局部作用(也就是空氣流動)產(chǎn)生的不舒適感之間存在著相當(dāng)大的個體差異。在一個集體性的室內(nèi)氣候中,這些標(biāo)準(zhǔn)考慮到相當(dāng)多的人感覺太熱或太冷,做了一個折衷。這些標(biāo)準(zhǔn)也考

70、慮到了大多數(shù)居住者因為空氣流動而感受到吹風(fēng)感。</p><p>  未來,在很多情況下這將被認(rèn)為是不足的。將會有一種讓空間內(nèi)所有的人都感覺舒適的系統(tǒng)需求。實現(xiàn)這種需求最顯著的方式是從整體氣候轉(zhuǎn)移到獨立控制的局部氣候中去。在辦公室中,對每個工作場所的獨立熱控制將會得到普及。這個系統(tǒng)應(yīng)該考慮到整體熱感覺的單獨控制而不會引起任何吹風(fēng)感或著其他局部不舒適的感覺。這項追求優(yōu)越性的研究涉及到為空間內(nèi)的所有人提供熱舒適感,而不

71、是讓他們妥協(xié)。</p><p>  熱舒適性與室內(nèi)空氣品質(zhì)</p><p>  現(xiàn)有的標(biāo)準(zhǔn)將熱舒適性和室內(nèi)空氣品質(zhì)區(qū)別對待,這表明它們是相互獨立的。最近的研究認(rèn)為這是不正確的。由空氣的溫度和濕度決定的焓值對可感知的空氣品質(zhì)有著很大的影響,在通風(fēng)標(biāo)準(zhǔn)中可感知的空氣品質(zhì)決定了必要的通風(fēng)量。研究已經(jīng)表明干燥、涼爽的空氣讓人覺得清新和舒適,但是將相同成分空氣的溫度和濕度提高卻讓人覺得不新鮮和悶熱。

72、吸入空氣是對鼻粘膜的對流和蒸發(fā)冷卻,鼻粘膜對于新鮮和愉悅感是必不可少的。由于缺少鼻黏膜的冷卻,炎熱、潮濕的空氣被認(rèn)為是不新鮮和悶熱的。這可以理解為鼻腔的局部熱不舒適感。預(yù)測平均評價模型是目前熱舒適性標(biāo)準(zhǔn)的基礎(chǔ)??偟膩碚f,它是相當(dāng)靈活的,并且考慮到了對空氣溫濕度大范圍的測定導(dǎo)致的人體熱中性。但是,在這個大范圍的空氣溫濕度中,吸入的空氣會被看成是十分不同的。舉個例子:輕薄的衣服,提高空氣流速,冷卻的頂棚和空氣溫度為28℃,相對濕度為60%,

73、預(yù)測平均評價將為0。除此之外,空氣的品質(zhì)也會被認(rèn)為是不新鮮和悶熱的。高品質(zhì)的空氣需要氣溫在20~22℃之間,而且空氣的濕度適中。適中的空氣溫度和濕度減少了病態(tài)建筑綜合癥和通風(fēng)需求,因此在供暖季節(jié)中節(jié)約了能源。它甚至可能對空調(diào)有益,空調(diào)季節(jié)節(jié)能。</p><p>  預(yù)測平均評價模型和適應(yīng)性模型</p><p>  預(yù)測平均評價模型建立在大量的美國和歐洲實驗的基礎(chǔ)上,涉及到超過1000名處于

74、良好受控環(huán)境中的被測試者。研究表明熱感覺與作用于人體體溫調(diào)節(jié)系統(tǒng)效應(yīng)機(jī)理上的熱負(fù)荷有著緊密的聯(lián)系。預(yù)測平均評價模型根據(jù)活動、衣服以及四個經(jīng)典熱環(huán)境參數(shù)來預(yù)測熱感受。優(yōu)點在于它是一個靈活的工具,包括了所有主要影響熱感受的變量。它量化了這六個因素絕對和相對的影響,因此能夠被廣泛地應(yīng)用于很多不同的暖通空調(diào)系統(tǒng)、不同的活動以及不同穿衣習(xí)慣的室內(nèi)環(huán)境中。預(yù)測平均評價模型已經(jīng)在亞洲的人工氣候室和實地研究中得到了驗證,最近大多數(shù)是ASHRAE在夏季和

75、冬季進(jìn)行的對全球范圍內(nèi)位于寒冷、溫和以及炎熱氣候下暖通空調(diào)建筑的研究。預(yù)測平均評價用于研究開發(fā)穩(wěn)態(tài)條件,但它已經(jīng)應(yīng)用在室內(nèi)相對緩慢波動的典型環(huán)境參數(shù)的近似值中。在溫度向上階梯式變化之后,預(yù)測平均評價模型快速、準(zhǔn)確地預(yù)測了熱感受,但是溫度下降需要花費大約20分鐘。</p><p>  對炎熱氣候下無空調(diào)建筑的實地研究顯示,預(yù)測平均評價模型預(yù)測的熱感受比居住者實際感受到的要暖。因為這種無空調(diào)建筑的存在,提出了一種適應(yīng)

76、性模型。該模型是一種關(guān)于室內(nèi)中性溫度與室外月平均溫度的回歸方程。因此,唯一的變量就是室外平均氣溫,它最高時可能間接地影響人體熱平衡。適應(yīng)性模型的一個明顯的缺點是它不能包含人體衣著、活動或四種典型的熱參數(shù),這些參數(shù)對人體熱平衡以及熱感受有著眾所周知的影響。雖然適應(yīng)性模型很好地預(yù)測了20世紀(jì)位于炎熱地區(qū)的無空調(diào)建筑的熱感受,但是,問題在于它能否較好地適應(yīng)未來的新型建筑,因為居住者有著不同的穿衣習(xí)慣和不同的活動方式。</p>&

77、lt;p>  那么,為什么說預(yù)測平均評價模型對炎熱地區(qū)無空調(diào)建筑中的熱感受評價過高呢?人們一般認(rèn)為生理的環(huán)境適應(yīng)能力并不重要。有人提出的解釋是,在自然通風(fēng)的建筑中可打開的窗戶比空調(diào)建筑中的更好控制。我們并不認(rèn)為這樣的解釋在炎熱的氣候條件下也是正確的。雖然可打開的窗有時可以實現(xiàn)對空氣溫度、空氣流動的控制,但這僅適用于在靠近窗戶的地方工作的人。那么在辦公室中遠(yuǎn)離窗戶的地方工作的人會怎樣呢?我們認(rèn)為在炎熱氣候?qū)γ總€空間進(jìn)行溫度自動控制的

78、空調(diào)系統(tǒng)比可打開的窗戶提供了一個更好的感覺控制。</p><p>  另一個因素的提出作為居住者不同期望值的說明。我們認(rèn)為這是解釋為什么預(yù)測平均評價過高地估計炎熱氣候下無空調(diào)建筑中居住者熱感受的正確因素。這些居住者是生活在室內(nèi)外都是炎熱環(huán)境下的代表人物,甚至可能是世代相傳的。他們也許認(rèn)為居住在比正常環(huán)境更熱的地方是他們的命運。這可以表述成一個期望因素e。這個因素e可能介于1和0.5之間。空調(diào)建筑期望值為1。<

79、;/p><p>  對于無空調(diào)建筑,期望因子需要根據(jù)全年炎熱天氣的持續(xù)情況以及這些建筑是否能和該地區(qū)許多其他的空調(diào)建筑相比較來假定。如果天氣全年或者大部分時間都很炎熱,而且沒有或者只有很少的空調(diào)建筑,e可能為0.5,如果有許多空調(diào)建筑,e就可能達(dá)到0.7。對于只有在夏季天氣才炎熱的地區(qū),并且沒有或者很少有建筑是安裝了空調(diào)系統(tǒng),期望值可能在0.7~0.8之間,但是在有空調(diào)建筑的地區(qū)e可能在0.8~0.9之間。在夏季天氣

80、只有短時間炎熱的地區(qū),期望值可能是0.9~1。表1首次提出了一種粗略估算相應(yīng)高、中、低程度期望因素范圍的方法。</p><p>  表1 炎熱氣候下無空調(diào)建筑的期望值</p><p>  造成預(yù)測平均評價和無空調(diào)建筑實際熱感受差異的第二個因素是估算的活動。在許多對辦公室的實地研究中,代謝速率是根據(jù)一份調(diào)查問卷對一個人靜坐、站立或行走時間的百分比的識別而估算出來的。這種機(jī)械式的方法忽略了一

81、個事實:當(dāng)一個人感覺熱的時候,會無意識地趨向于放慢他們的活動。他們通過降低代謝速率來適應(yīng)炎熱的環(huán)境。在炎熱環(huán)境中計算預(yù)測平均評價時,通過插入一個減小了的代謝速率,使得較低的代謝速率得到認(rèn)可。</p><p>  為了進(jìn)一步檢驗這些假設(shè),從熱舒適性實地實驗數(shù)據(jù)庫中下載數(shù)據(jù)。只有炎熱氣候地區(qū)夏季在無空調(diào)建筑中獲得的II級質(zhì)量的數(shù)據(jù)才能用來做分析。包括來自曼谷、布里斯班、雅典和新加坡在內(nèi)的四個城市的數(shù)據(jù),代表了共320

82、0多組的觀察值。來自這四個炎熱氣候條件下的城市的數(shù)據(jù)也被用于開發(fā)適應(yīng)性模型。對于每一組的觀察值,記錄的代謝速率每減少6.7%為一個建立在熱中性之上的預(yù)測平均評價單位,即1.5的預(yù)測平均評價相當(dāng)于代謝速率減少了10%。接下來,用降低的代謝速率和ASHRAE的熱舒適性工具重新計算預(yù)測平均評價值。得到的預(yù)測平均評價結(jié)果再乘以期望因子加以修正。期望因子估算結(jié)果,布里斯班為0.9,雅典和新加坡為0.7, 曼谷為0.6。作為實地研究中每一棟建筑的平

83、均值,圖1和表2對比了觀察到的熱感受與使用炎熱氣候條件下的預(yù)測平均評價拓展模型預(yù)測到的熱感受。</p><p>  運用炎熱氣候條件下無空調(diào)建筑的新的延伸的預(yù)測平均評價模型,對觀察到的熱感受的平均值與預(yù)測的熱感受值。直線是基于根據(jù)每棟建筑加權(quán)的線性回歸分析回應(yīng)的數(shù)據(jù)產(chǎn)生的。</p><p>  表2 炎熱地區(qū)中的無空調(diào)建筑</p><p>  使用預(yù)測平均評價拓展

84、模型,對觀察到的熱感受投票值與預(yù)測的進(jìn)行對比。</p><p>  新的預(yù)測平均評價拓展指模型適用于炎熱氣候下無空調(diào)建筑,能準(zhǔn)確預(yù)測實際的投票值。拓展部分結(jié)合了預(yù)測平均評價和適應(yīng)性模型的優(yōu)點。適應(yīng)性模型肯定了期望的重要性,同時維持直接影響人體熱平衡的經(jīng)典熱參數(shù)的預(yù)測平均評價模型。也應(yīng)該注意到,在期望因數(shù)較低時,新預(yù)測平均評價的拓展部分預(yù)測了更高的溫度上限。期望不高的人愿意接受一個炎熱的室內(nèi)環(huán)境。這與支持適應(yīng)性模型

85、的觀察不謀而合。</p><p>  進(jìn)一步地分析有利于改善預(yù)測平均評價拓展模型,對世界不同炎熱地區(qū)無空調(diào)建筑的附加研究將有利于進(jìn)一步闡明居住者的期望值和可接受性,這同樣也有利于研究炎熱的辦公環(huán)境對工作速度和代謝速率的影響。</p><p><b>  結(jié)論</b></p><p>  預(yù)測平均評價模型已經(jīng)在裝有暖通空調(diào)系統(tǒng)的建筑現(xiàn)場得到了確認(rèn)

86、,這些建筑位于寒帶、溫帶和炎熱地區(qū),而且研究貫穿了整個夏季和冬季。在炎熱氣候條件下無空調(diào)建筑中的人們因為較低的期望值,感覺到的熱度沒有預(yù)測平均評價預(yù)測的那么嚴(yán)峻。</p><p>  包括一個期望因數(shù)的預(yù)測平均評價拓展模型被提議在炎熱氣候條件下無空調(diào)建筑中使用。</p><p>  在三大洲炎熱氣候地區(qū)無空調(diào)建筑中進(jìn)行的實地研究很好地驗證了預(yù)測平均評價拓展模型。</p>&l

87、t;p>  建筑中的熱舒適性和空氣品質(zhì)應(yīng)該被同時考慮。高認(rèn)可度的空氣品質(zhì)需要適宜的空氣溫度和濕度。</p><p><b>  致謝</b></p><p>  丹麥科技研究委員會為此項研究提供了經(jīng)濟(jì)支持,在此致以誠摯的謝意。</p><p><b>  參考文獻(xiàn)</b></p><p>  

88、Andersson, L.O., Frisk, P., Löfstedt, B., Wyon, D.P., (1975),人體對大空間辦公樓中干燥、潮濕和間歇性潮濕空氣的反應(yīng).瑞典建筑研究文件,D11/75系列.</p><p>  美國采暖、制冷與空調(diào)工程師學(xué)會 55-1992:居民的熱環(huán)境條件.美國社會供暖、制冷和空調(diào)工程師學(xué)會.</p><p>  Baker, N. an

89、d Standeven, M. (1995),自然通風(fēng)建筑中熱舒適評估的行為方法. CIBSE全國性會議論文集,第76~84頁.</p><p>  Brager G.S., de Dear R.J. (1998),建筑環(huán)境中的熱適應(yīng)性:文獻(xiàn)綜述.能源與建筑,27,第83~96頁.</p><p>  Cena, K.M. (1998),炎熱干旱地區(qū)居住者舒適性和辦公熱環(huán)境的實地研究。(E

90、ds. Cena, K. and de Dear, R.)。最終報告,美國采暖、制冷與空調(diào)工程師學(xué)會921-RP,美國采暖、制冷與空調(diào)工程師學(xué)會,亞特蘭大.</p><p>  de Dear, R., Fountain, M., Popovic, S., Watkins, S., Brager, G., Arens, E., Benton, C., (1993a),炎熱潮濕地區(qū)居住者舒適性和辦公熱環(huán)境的實地研究

91、。最終報告,美國采暖、制冷與空調(diào)工程師學(xué)會702 RP,美國采暖、制冷與空調(diào)工程師學(xué)會,亞特蘭大.</p><p>  de Dear, R., Ring, J.W., Fanger, P.O. (1993b),由環(huán)境溫度突變引起的熱感受。室內(nèi)空氣,第3期,181-192頁.</p><p>  de Dear, R. J., Leow, K. G. and Foo, S.C. (1991

92、),潮濕熱帶地區(qū)的熱舒適:新加坡空調(diào)與自然通風(fēng)建筑的現(xiàn)場研究。生物氣象學(xué)的國際雜志,34期,259~265頁.</p><p>  de Dear, R.J. (1998),熱舒適性實地實驗的全球數(shù)據(jù)庫。ASHRAE協(xié)會報,104(1b),1141~1152頁.</p><p>  de Dear, R.J. and Auliciems, A. (1985),在六個澳大利亞實地研究中確認(rèn)熱

93、舒適性的預(yù)測平均評價模型。ASHRAE會報,91(2),452~468頁.</p><p>  de Dear, R.J., Brager G.S. (1998),開發(fā)熱舒適性和參數(shù)的自適應(yīng)模型。ASHRAE會報,104(1a),145~167頁.</p><p>  de Dear, R.J., Leow, K.G., and Ameen, A. (1991),潮濕熱帶地區(qū)的熱舒適性—第

94、一部分:新加坡對溫度參數(shù)的人工氣象室試驗。ASHRAE會報,97(1),874~879頁.</p><p>  Donini, G., Molina, J., Martello, C., Ho Ching Lai, D., Ho Lai, K., Yu Chang, C., La Flamme, M., Nguyen, V.H., Haghihat, F. (1996),寒帶人體舒適性和辦公熱環(huán)境的現(xiàn)場研究。最終

95、報告,美國采暖、制冷與空調(diào)工程師學(xué)會821 RP,美國采暖、制冷與空調(diào)工程師學(xué)會,亞特蘭大.</p><p>  Fanger, P.O. (1970),熱舒適。丹麥科技出版社,哥本哈根,丹麥.</p><p>  Fouintain, M.E. and Huizenga, C. (1997),同行使用的熱感受預(yù)測工具。ASHRAE會報,103(2),130~136頁.</p>

96、<p>  Humphreys, M.A. (1978),室外溫度和室內(nèi)舒適性。建筑研究與實踐,6(2),92~105頁.</p><p>  Tanabe, S., Kimura, K., Hara, T. (1987),日本夏季熱舒適要求。ASHRAE會報,93(1),564~577頁.</p><p>  Toftum, J., Jørgensen, A.S.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論