版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 原文:</b></p><p> Optimal Designs</p><p> 2.2 Design variables</p><p> The most important classification of design variables is into:</p><p>
2、 ? SIZE design variables</p><p> ? SHAPE design variables</p><p> ? TOPOLOGY design variables</p><p> stated here in order of difficulty to solve but also in order of increasing
3、 importance</p><p> for the obtained objective value. It is therefore not surprising that recent research to some extent concentrates on topology design variables.</p><p> The notion of size d
4、esign variable, relates to the thickness of a beam, a plate or a shell (although this is often termed the shape of a beam, a plate or a shell). The area of a bar in a truss is also a size design variable, and the definit
5、ion of size variable is related to the fact that the modelling domain is not changed. So, the line of the beam, rod or bar is unchanged, just like the reference surface of a plate or a shell is assumed unchanged when the
6、 concept of size design variable is used</p><p> The notion of shape design variable, relates to the reference domain of the actual model. For beams, rods and bars we may treat the length as a design variab
7、le, which is then a shape design variable. Also the curvature of the reference line for these one-dimensional models is a shape design variable. For 2D-models likewise the boundary curve or the curvature of the reference
8、 surface are shape design variables.</p><p> For 3D-models the boundary surface (including internal boundaries like holes) is a shape design variable. Stress concentration problems are often related to shap
9、es of boundaries. Finally, the notion of topology design variable, relates to presence or absence of a certain design aspect. Should two joints in a truss be connected with a bar, - yes or no ?. Should a continuum like a
10、 plate have a hole, - yes or no ?. The complications in treating topology design variables are due to the fact that a c</p><p> Let us exemplify the difference between size, shape and topology design variab
11、les. In a truss (2D as well as 3D), the bar areas (uniform or non-uniform) are the sizes, the positions of the joints determine the shape, and the chosen bars (among many possibilities) give the topology. In a shell the
12、thickness and material density distributions are the sizes, the boundaries of the reference surface and its curvatures are the shapes, and the number of holes in the reference surface is the topology.</p><p>
13、; 2.2.1 Alternative classifications</p><p> Many alternative names to classify design variables can be found in the literature, like cross-sectional, geometrical, configuration, layout etc. We try to avoid
14、 these names in order to avoid unnecessary confusion. The design variables may also be classified from other points of view. Let us first discuss the distinction between continuous and discrete design variables. If only
15、a number of specific values for the design variable is acceptable, say when catalog values must be used, then the notio</p><p> Another meaning of the ”continuous” and ”discrete” relates to the modelling of
16、 the design domain. A complete continuous description in space means design variables related to a point (like a design function) and not to a domain. Often this is termed distributed parameter description, in contrast t
17、o say a truss description where each bar is described as a unit. In a finite element modelling of a continuum, the element domains may be related to a number of design values, so in reality this is a di</p><p&
18、gt; fact that everything in a computer is discrete, the distinction between continuous and discrete related to the modelling of the design domain is of no practical importance. </p><p> For a successful op
19、timization the choice of design parametrization is of vital importance, perhaps the most important decision to take. In the experience of the author it is wise to start with as few design variables as possible. A hierarc
20、hical description is suggested, and also it is important to make sure that the design variables serve different purposes. It is asking for practical problems, if the design variables are chosen such that different combin
21、ations of design variables can give the s</p><p> The parametrization is also related to the chosen optimization procedure, so with an optimality criterion method large quantities, say 50.000 design variabl
22、es, can be handled without problems.</p><p> 2.3 Design objective</p><p> The design objective is a function or a functional that returns a single value from which different designs can be com
23、pared. The optimal design is then the design with a minimum (or maximum) value of the objective. In this book we often use the notation Φ to denote the objective. We shall not treat multi-objective formulations, which in
24、 most cases are reformulated into a single objective anyhow.</p><p> Alternative names for the objective include criterion, cost, merit, goal as well as many others. The name ”criterion” is in this book use
25、d extensively in relation to optimality criterion formulations (see chapter 14), so we try only to use the name objective, although a name like cost may be more appealing. In fact, the objective value is often a measure
26、of the cost of the design. </p><p> A minimum and maximum formulation may be interchanged by simply changing the sign of the objective. However, it is important to notice that many methods just locate a sta
27、tionary value of the objective, which means that the convergence of the procedure must be followed and the final design justified.A much more severe problem is related to the existence of local stationary solutions,and i
28、n reality very few (and often non-practical) methods are able to find a global optimal solution. Starting an o</p><p> However, for problems where a large number of practical constraints need to be taken in
29、to account, it is more safe to state that we have optimized the design as an alternative to obtaining the optimal design. Furthermore, it is not always easy to see from the formulation whether an optimal design exists. I
30、f an optimal design does not exist we talk about a not well formulated problem. Even so a procedure may return an optimized design, and the convergence often reveals the missing aspect(s) in th</p><p> An i
31、mportant part of an optimization procedure is to decide when to stop. We talk about convergence tests. Two different aspects of convergence must be clarified, convergence of the design objective and convergence of the de
32、sign variables. Often the rates of these two convergences are very different. Also the formulation of the specific stop condition can be mathematically formulated more or less complicated. The favourite formulation of th
33、e present author is as follows: When the design changes </p><p><b> 翻譯譯文</b></p><p> 2.2個(gè)設(shè)計(jì)變量設(shè)計(jì)變量的分類是最重要的:?尺寸設(shè)計(jì)變量?形狀設(shè)計(jì)變量?拓?fù)湓O(shè)計(jì)變量 這里所說(shuō)的在解決難題也越來(lái)越重視,以便獲得客觀的價(jià)值。因此毫不奇怪,在某種程度上
34、,最近的研究集中在拓?fù)湓O(shè)計(jì)變量。 尺寸設(shè)計(jì)變量的概念,涉及一種梁的厚度,板或殼(雖然這是通常被稱為一束,形狀的板或殼)。在桁架桿地區(qū)也是一個(gè)尺寸設(shè)計(jì)變量,和尺寸變量的定義是這樣的事實(shí),建模領(lǐng)域是沒(méi)有改變的關(guān)系。因此,梁的線,桿或棒是不變的,就像一個(gè)板或殼參考表面被假定不變時(shí)的尺寸設(shè)計(jì)變量的概念的使用。在三維問(wèn)題的質(zhì)量密度或相對(duì)密度的大小。取向的非各向同性材料我們也把尺寸設(shè)計(jì)變量。形狀設(shè)計(jì)變量的概念,涉及到實(shí)際的模型參考域。梁,棒
35、可以將長(zhǎng)度為設(shè)計(jì)變量,然后一個(gè)形狀設(shè)計(jì)變量。也為這些一維模型的參考線的曲率是一個(gè)形狀設(shè)計(jì)變量。對(duì)于二維模型同樣有邊界曲線或基準(zhǔn)表面的曲率形狀設(shè)計(jì)變量。</p><p> 三維模型的邊界表面(包括內(nèi)部邊界像孔)是一個(gè)形狀設(shè)計(jì)變量。應(yīng)力集中問(wèn)題往往是相關(guān)的邊界的形狀。 最后,拓?fù)湓O(shè)計(jì)變量的概念,涉及到一個(gè)特定的設(shè)計(jì)方面存在或不存在。應(yīng)在桁架節(jié)點(diǎn)連接桿,-是或不是?一個(gè)連續(xù)的。應(yīng)該像一個(gè)盤(pán)子上有一個(gè)洞,是還是不
36、是?。在處理拓?fù)湓O(shè)計(jì)變量的并發(fā)癥是由于拓?fù)渲械淖兓谠O(shè)計(jì)中的響應(yīng)不連續(xù)變化的結(jié)果,而在大小或形狀的設(shè)計(jì)響應(yīng)不斷變化的設(shè)計(jì)變量連續(xù)變化的一般結(jié)果。 讓我們舉例說(shuō)明之間的差的大小,形狀和拓?fù)湓O(shè)計(jì)變量。 在桁架(2D和3D),邊界區(qū)域(均勻或不均勻)的大小,關(guān)節(jié)的位置確定的形狀,和所選擇的邊界(其中許多可能性)給拓?fù)洹T跉さ暮穸群筒牧厦芏确植嫉拇笮?,參考面及其曲率的邊界的形狀,并在參考表面孔的?shù)量是拓?fù)洹?lt;/p>
37、<p> 2.2.1另一種分類 許多其他的名字將設(shè)計(jì)變量可以在文獻(xiàn)中找到,如橫截面,幾何,結(jié)構(gòu),布局等,我們盡量避免以避免不必要的混淆這些名字。</p><p> 設(shè)計(jì)變量也可以從其他角度分類。讓我們先討論連續(xù)和離散設(shè)計(jì)變量之間的區(qū)別。如果只為設(shè)計(jì)變量的特定值的數(shù)量是可以接受的,說(shuō)的時(shí)候必須使用目錄的值,然后使用離散的設(shè)計(jì)變量的概念,并稱之為整數(shù)規(guī)劃成為關(guān)注的焦點(diǎn),有關(guān)的程序。這是不包括在
38、本書(shū)致力于不斷的描述,但我們將設(shè)計(jì)變量的值的絕對(duì)限制。</p><p> 另一種意義上的“連續(xù)”和“離散”涉及到設(shè)計(jì)領(lǐng)域的建模。連續(xù)空間中的一個(gè)完整的描述手段一點(diǎn)相關(guān)的設(shè)計(jì)變量(如設(shè)計(jì)功能)和不到域。這通常被稱為分布參數(shù)描述,相反,說(shuō)一個(gè)桁架的描述,描述為一個(gè)單元,每一桿。在一個(gè)連續(xù)的有限元模型,單元域可能要數(shù)設(shè)計(jì)值相關(guān),因此在現(xiàn)實(shí)中這是一個(gè)離散的描述。然而,隨著元素的大量事實(shí)和計(jì)算機(jī)中的一切都是離散的,連續(xù)的
39、和離散的設(shè)計(jì)領(lǐng)域建模的相關(guān)之間的區(qū)別是沒(méi)有實(shí)際意義的。 一個(gè)成功的優(yōu)化設(shè)計(jì)參數(shù)的選擇是至關(guān)重要的,也許是最重要的決定。在本文開(kāi)始的一些設(shè)計(jì)變量可能是明智的經(jīng)驗(yàn)。提出了一種分層描述,并確保設(shè)計(jì)變量為不同目的的重要。它要求的實(shí)際問(wèn)題,如果設(shè)計(jì)變量的選擇,不同的組合設(shè)計(jì)變量可以提供相同的設(shè)計(jì)。參數(shù)化也是選擇的優(yōu)化過(guò)程相關(guān),所以一個(gè)優(yōu)化準(zhǔn)則法大量,說(shuō)50個(gè)設(shè)計(jì)變量,可以在未經(jīng)處理的問(wèn)題。</p><p> 2.
40、3設(shè)計(jì)的目的 設(shè)計(jì)的目的是一個(gè)函數(shù)或函數(shù)返回單個(gè)值,不同的設(shè)計(jì),可以進(jìn)行比較。優(yōu)化設(shè)計(jì)是一個(gè)設(shè)計(jì)最?。ɑ蜃畲螅┑目陀^價(jià)值。在這本書(shū)中我們經(jīng)常使用的 符號(hào)Φ表示目的。我們不應(yīng)當(dāng)把多目標(biāo)的規(guī)劃,這在大多數(shù)情況下,轉(zhuǎn)化為單目標(biāo)總之。為目的的替代名稱包括標(biāo)準(zhǔn),成本,價(jià)值,目標(biāo),以及其他許多人?!霸谶@本書(shū)中被廣泛使用,在關(guān)系到最優(yōu)準(zhǔn)則的配方標(biāo)準(zhǔn)”(見(jiàn)14章),所以我們只使用名稱的目的,雖然這樣的名字,成本可能更具吸引力。事實(shí)上,
41、客觀的價(jià)值往往是衡量成本的設(shè)計(jì)。</p><p> 最小和最大的規(guī)劃可以互換,通過(guò)簡(jiǎn)單地改變目標(biāo)的符號(hào)。然而,這是要注意,很多方法只找到一個(gè)固定的目標(biāo)值的重要,這意味著收斂的過(guò)程中必須遵循和最終的設(shè)計(jì)合理。 一個(gè)更嚴(yán)重的問(wèn)題是局部平穩(wěn)解的存在性,并在現(xiàn)實(shí)中很少(通常是非現(xiàn)實(shí))的方法是能夠找到全局最優(yōu)解。從不同的初始設(shè)計(jì)的優(yōu)化設(shè)計(jì)程序和總是結(jié)束在相同的優(yōu)化設(shè)計(jì)可以提高所得到的解是全局最優(yōu)解的概率最實(shí)用的程
42、序。值得注意的是,理想化的問(wèn)題的一些優(yōu)化設(shè)計(jì)的配方可以包含全局最優(yōu)解的一個(gè)證明。</p><p> 然而,在大量的實(shí)際約束,需要考慮的問(wèn)題,它是更安全的國(guó)家,我們已經(jīng)優(yōu)化設(shè)計(jì)作為一種替代獲得最優(yōu)設(shè)計(jì)。此外,它并不總是很容易看到,從是否存在的配方優(yōu)化設(shè)計(jì)。如果一個(gè)優(yōu)化設(shè)計(jì)不存在我們談的不是制定問(wèn)題。即便如此,一個(gè)程序可能會(huì)返回一個(gè)優(yōu)化設(shè)計(jì),和收斂性往往揭示了失蹤的方面(S)的制定。</p><
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 程序不變量外文翻譯
- authorware變量分類
- 變量選擇為投資組合選擇【外文翻譯】
- 技術(shù)結(jié)構(gòu)分類【外文翻譯】
- 分類變量資料的統(tǒng)計(jì)描述
- 畢業(yè)設(shè)計(jì)液壓機(jī)分類軟件的設(shè)計(jì)(論文+外文翻譯)
- 分類變量的卡方檢驗(yàn)
- 分類型變量取值編碼重組
- [雙語(yǔ)翻譯]逆向物流外文翻譯--逆向物流的關(guān)鍵活動(dòng)、決策變量和績(jī)效指標(biāo)
- [學(xué)習(xí)]分類變量資料的假設(shè)檢驗(yàn)
- 綜合運(yùn)用品牌分類的品牌建設(shè)【外文翻譯】
- [雙語(yǔ)翻譯]物流外文翻譯--城市物流措施及其關(guān)聯(lián)影響的分類
- 平面構(gòu)形的_3不變量分類.pdf
- [雙語(yǔ)翻譯]逆向物流外文翻譯--逆向物流的關(guān)鍵活動(dòng)、決策變量和績(jī)效指標(biāo)(英文)
- 分類中的變量選擇方法及應(yīng)用.pdf
- 基于變量屬性分類的DEA模型研究.pdf
- [學(xué)習(xí)]分類變量資料的統(tǒng)計(jì)分析
- 外文翻譯--雙實(shí)驗(yàn)變量規(guī)劃步進(jìn)應(yīng)力加速壽命實(shí)驗(yàn)
- 援助與公共財(cái)政一個(gè)變量嗎?【外文翻譯】
- [雙語(yǔ)翻譯]物流外文翻譯--城市物流措施及其關(guān)聯(lián)影響的分類(英文)
評(píng)論
0/150
提交評(píng)論