基于矢量數(shù)據(jù)的遙感影像分割方法研究_第1頁
已閱讀1頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p>  基于矢量數(shù)據(jù)的遙感影像分割方法研究</p><p>  摘 要:該文針對變化檢測中獲取同質(zhì)像斑較難的問題,提出應(yīng)用矢量數(shù)據(jù)輔助分割獲取同質(zhì)像斑,進一步地提出了基于歷史矢量與雙時相遙感影像的變化檢測方法,實驗結(jié)果表明,該方法能檢測出80%變化的像斑,并能同時獲取變化像斑的類別,證明了該方法的有效性。 </p><p>  關(guān)鍵詞:矢量數(shù)據(jù) 像斑 變化檢測 多尺度分割 &

2、lt;/p><p>  中圖分類號:TP751 文獻標(biāo)識碼:A 文章編號:1674-098X(2015)12(b)-0052-02 </p><p>  遙感影像變化檢測方法已經(jīng)從傳統(tǒng)的像元級變化檢測開始向像斑級(對象級)變化檢測方向轉(zhuǎn)變。雖然許多變化檢測方法采用了面向?qū)ο蟾拍頪1-2],但由于多數(shù)對象(像斑)僅由影像分割獲得,獲取方式單一,且該方法極度依賴影像分割算法的精度,目前為止仍沒有一

3、種具有普適性和高精度的針對高分辨率遙感的分割技術(shù)。 </p><p>  該文提出一種面向地理國情監(jiān)測的高分辨率遙感影像與矢量數(shù)據(jù)結(jié)合的變化檢測的方法。首先,分析了遙感影像與矢量數(shù)據(jù)套合結(jié)果的不一致性,通過應(yīng)用矢量數(shù)據(jù)輔助分割,提出了一種獲取同質(zhì)性較強的像斑的方法。進一步地提出了基于歷史矢量與雙時相遙感影像的變化檢測方法,并用實驗證明了其可行性。 </p><p><b>  1

4、 同質(zhì)像斑獲取 </b></p><p>  1.1 遙感影像與矢量數(shù)據(jù)套合不一致性 </p><p>  在理想的情況下,通過配準(zhǔn)套合獲取的遙感影像各像斑,其內(nèi)部像素應(yīng)保持灰度同質(zhì)性;同時,屬于同一類別的像斑應(yīng)該保持類內(nèi)光譜一致性,不同類別的像斑應(yīng)具有類間光譜的相異性。 </p><p>  這也是影像分割的目的和后續(xù)基于像斑進行影像分析的基礎(chǔ)。然而,

5、由于土地利用和土地覆蓋的不同,使得這種理想情況在實際的應(yīng)用中很難出現(xiàn)。因此,由于數(shù)據(jù)源、數(shù)據(jù)格式、生成標(biāo)準(zhǔn)、規(guī)范等多方面的不同,以及數(shù)據(jù)本身的特點和數(shù)據(jù)綜合應(yīng)用時的方法及其誤差等的存在,使得遙感影像與矢量數(shù)據(jù)套合結(jié)果存在上述不一致性。該文對遙感影像與矢量數(shù)據(jù)套合不一致性問題展開初步探討,采用多尺度分割算法獲取同質(zhì)像斑。 </p><p>  1.2 基于多尺度分割獲取同質(zhì)像斑 </p><p&

6、gt;  為獲取同質(zhì)像斑,該文綜合利用GIS輔助數(shù)據(jù)分割和多尺度分割方法。首先,利用矢量輔助數(shù)據(jù)與遙感影像套合獲取像斑。其次,對套合獲取的像斑進行再分割,生成子像斑,從而保證各像斑內(nèi)的光譜同質(zhì)性。技術(shù)流程如圖1所示。 </p><p><b>  具體步驟如下。 </b></p><p>  (1)通過矢量數(shù)據(jù)和兩個時期遙感影像分別配準(zhǔn)套合,僅利用矢量數(shù)據(jù)的圖斑邊界信

7、息獲取影像像斑,分別視為T1期像斑和T2期像斑。同時,根據(jù)矢量數(shù)據(jù)屬性信息中的類別信息,獲取像斑類別。(2)設(shè)定一定的尺度參數(shù),以T1、T2時期影像的響應(yīng)光譜特征為依據(jù),分別對T1、T2期像斑進行再分割,再分割后的像斑繼承上一級像斑的類別信息。(3)對步驟(2)中獲得的像斑,根據(jù)類別的不同分別設(shè)置相應(yīng)的尺度參數(shù)進行進一步分割,使得各類別像斑同質(zhì)性均增強后,停止分割,將獲取的子像斑視為T1、T2期子像斑。(4)將步驟(3)獲得的T1時期子

8、像斑和T2時期子像斑進行疊置分割,使得前后兩個時期像斑一一對應(yīng)。因此,該方法是建立在多尺度分割的基礎(chǔ)上,與已有的方法不同,該方法充分考慮了矢量數(shù)據(jù)的屬性信息、影像的光譜信息以及上下文信息。 </p><p><b>  2 變化檢測 </b></p><p>  基于歷史矢量與雙時相遙感影像的變化檢測方法,主要分為以下幾個步驟:(1)像斑的獲取及其特征提取。1.2中已

9、作了詳細闡述。在獲得同質(zhì)像斑的基礎(chǔ)上,提取光譜、紋理、形狀等特征,構(gòu)建像斑特征空間,并對特征空間進行優(yōu)化。像斑特征由組成像斑的內(nèi)部像素灰度值通過一定的數(shù)學(xué)運算獲取。獲取的光譜特征主要包括均值、方差、信息熵等,形狀特征主要包括面積、密度、矩形契合度、形狀指數(shù)、長寬比等,紋理特征主要通過灰度共生矩陣計算。(2)變化像斑獲取方法。主要采用分類后處理的方法。針對分類后處理方法,T1期影像根據(jù)T1期矢量數(shù)據(jù)的屬性信息,獲取像斑類別,對像斑進行分類

10、。T2期影像可采用基于像斑的最鄰近分類算法,對T2期影像的像斑進行分類。 </p><p>  獲取兩個時期像斑分類結(jié)果后,通過疊置分析,對兩個時期影像的像斑進行變化檢測。該方法在決定是否發(fā)生變化的同時,也獲得了像斑的變化類別。 </p><p>  獲取變化檢測結(jié)果后,可以根據(jù)再分割過程中形成的像斑與子像斑之間的繼承關(guān)系,將已經(jīng)獲取的變化檢測結(jié)果轉(zhuǎn)換到矢量圖斑上去,以此評價變化檢測結(jié)果,

11、并估計應(yīng)用此變化檢測結(jié)果更新現(xiàn)有矢量數(shù)據(jù)的能力。 </p><p>  3 實驗及結(jié)果分析 </p><p>  該文采用的實驗數(shù)據(jù)為某地區(qū)2012年5月和2014年5月的快鳥衛(wèi)星影像(藍、綠、紅、近紅外波段,以及全色波段),以及相同區(qū)域2012年5月矢量圖。實驗區(qū)大小為1 001像元×1 003像元,矢量圖斑總數(shù)118個。 </p><p>  3.1

12、獲取同質(zhì)像斑 </p><p>  首先,分別將兩個時期遙感影像與矢量數(shù)據(jù)進行配準(zhǔn)套合獲取像斑,并獲取像斑類別。其次,以光譜特征和形狀特征為依據(jù),對T1、T2時期影像分別進行多尺度分割,具體參數(shù):尺度參數(shù)為250,形狀指數(shù)為0.7,緊致度為0.5。此時獲得的分割結(jié)果出現(xiàn)了植被過分割和非植被分割尺度不夠的現(xiàn)象,因此需要根據(jù)類別的不同分別設(shè)置相應(yīng)的尺度參數(shù)。植被類別的分割尺度參數(shù)為:尺度參數(shù)為300,形狀指數(shù)為0.6

13、,緊致度為0.5,對植被類別像斑進行合并;非植被類別的分割尺度參數(shù)為:尺度參數(shù)為200,形狀指數(shù)為0.8,緊致度為0.5,對非植被類別的像斑進行再分割。從而使得各類別像斑同質(zhì)性均增強,停止分割。最后,將兩期影像分割結(jié)果疊置分割,從而獲取一一對應(yīng)的影像像斑。如圖2所示,共獲得385個子像斑,從目視效果來看,絕大多數(shù)的像斑同質(zhì)性較強,有利于后續(xù)的變化檢測分析。 </p><p><b>  3.2 變化檢測

14、 </b></p><p>  采用基于類間距離和窮舉法的特征選擇方法,對初始化特征空間進行優(yōu)化,選取最佳特征組合。根據(jù)矢量數(shù)據(jù)中的屬性信息,對2012年影像像斑進行分類。同時,利用基于像斑的最鄰近分類算法,以最小距離為測度對2014年影像像斑進行分類。 </p><p>  獲取兩個時期像斑的分類結(jié)果后,通過疊置分析,對兩個時期影像對應(yīng)像斑的類別進行變化檢測,如圖3所示。由實

15、驗結(jié)果得出,80%發(fā)生變化的像斑,通過上述方法均能夠被成功檢測出來,證實了該方法的有效性和可行性。最后,將基于像斑的變化檢測結(jié)果轉(zhuǎn)換到矢量圖斑上去。如果矢量圖斑范圍內(nèi)有像斑發(fā)生變化,則認(rèn)為該圖斑發(fā)生變化,從而可以對歷史矢量圖進行更新。 </p><p><b>  4 結(jié)語 </b></p><p>  該文針對遙感影像與矢量數(shù)據(jù)套合不一致性問題,提出了一種多尺度分割

16、算法來獲取同質(zhì)像斑,并在此基礎(chǔ)上利用歷史矢量與雙時相遙感影像的變化檢測方法進行變化檢測。方法流程清晰、原理簡單、操作性強,具有良好的應(yīng)用前景。由于前后期影像分類是單獨進行的,而變化檢測結(jié)果只是比較前后期對應(yīng)像斑類別是否相同。因此,這種方法在當(dāng)前后時期影像的響應(yīng)光譜、影像來源等差別較大時仍然能夠進行。 </p><p>  矢量數(shù)據(jù)信息的引入促進遙感影像分割、分類分析基本模式的變化,它使遙感影像分析從一種純粹認(rèn)識的

17、過程轉(zhuǎn)化為一種具有先驗知識的再認(rèn)識過程,使本是“理解”的影像分析變?yōu)榱艘环N通過影像進行的“鑒別”“比較”的過程。 </p><p><b>  參考文獻 </b></p><p>  [1]張連華,龐勇,岳彩榮,等.基于纓帽變換的景洪市時間序列Landsat影像森林?jǐn)_動自動識別方法研究[J].林業(yè)調(diào)查規(guī)劃,2012,38(2):6-12. </p>&l

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論