版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1MachineLearningResearchFourCurrentDirectionsThomasG.Dietterich■Machinelearningresearchhasbeenmakinggreatprogressinmanydirections.Thisarticlesummarizesfourofthesedirectionsdiscussessomecurrentopenproblems.Thefourdirectio
2、nsare(1)theimprovementofclassificationaccuracybylearningensemblesofclassifiers(2)methodsfscalingupsupervisedlearningalgithms(3)reinfcementlearning(4)thelearningofcomplexstochasticmodels.Thelastfiveyearshaveseenanexplosio
3、ninmachinelearningresearch.Thisexplosionhasmanycauses:Firstseparateresearchcommunitiesinsymbolicmachinelearningcomputationlearningtheyneuralwksstatisticspatternrecognitionhavediscoveredoneanotherbeguntowktogether.Secondm
4、achinelearningtechniquesarebeingappliedtonewkindsofproblemincludingknowledgediscoveryindatabaseslanguageprocessingrobotcontrolcombinatialoptimizationaswellastometraditionalproblemssuchasspeechrecognitionfacerecognitionhw
5、ritingrecognitionmedicaldataanalysisgameplaying.InthisarticleIedfourtopicswithinmachinelearningwheretherehasbeenalotofrecentactivity.ThepurposeofthearticleistodescribetheresultsintheseareastoabroaderAIaudiencetosketchsom
6、eoftheopenresearchproblems.Thetopicareasare(1)ensemblesofclassifiers(2)methodsfscalingupsupervisedlearningalgithms(3)reinfcementlearning(4)thelearningofcomplexstochasticmodels.Thereadershouldbecautionedthatthisarticleisn
7、otacomprehensivereviewofeachofthesetopics.Rathermygoalistoprovidearepresentativesampleoftheresearchineachofthesefourareas.Ineachoftheareastherearemanyotherpapersthatdescriberelevantwk.IapologizetothoseauthswhosewkIwasuna
8、bletoincludeinthearticle.EnsemblesEnsemblesofofClassifiersClassifiersThefirsttopicconcernsmethodsfimprovingaccuracyinsupervisedlearning.Ibeginbyintroducingsomenotation.Insupervisedlearningalearningprogramisgiventraininge
9、xamplesofthefm(x1y1)…(xmym)fsomeunknownfunctiony=f(x).Thexivaluesaretypicallyvectsofthefmwhosecomponentsarediscreterealvaluedsuchasheightweightcolage.ThesearealsocalledthefeatureofXiIusethenotationXijto.refertothejth3hyp
10、otheses.Thelearningalgithmisrunseveraltimeseachtimewithadifferentsubsetofthetrainingexamples.Thistechniquewksespeciallywellfunstablelearningalgithmsalgithmswhoseoutputclassifierundergoesmajchangesinresponsetosmallchanges
11、inthetrainingdata.Decisiontreeneuralwkrulelearningalgithmsareallunstable.Linearregressionnearestneighblinearthresholdalgithmsaregenerallystable.Themoststraightfwardwayofmanipulatingthetrainingsetiscalledbagging.Oneachrun
12、baggingpresentsthelearningalgithmwithatrainingsetthatconsistofasampleofmtrainingexamplesdrawnromlywithreplacementfromtheiginaltrainingsetofmitems.Suchatrainingsetiscalledabootstrapreplicateoftheiginaltrainingsetthetechni
13、queiscalledbootstrapaggregation(Breiman1996a).Eachbootstrapreplicatecontainsontheaverage63.2percentoftheiginalsetwithseveraltrainingexamplesappearingmultipletimes.Anothertrainingsetsamplingmethodistoconstructthetrainings
14、etsbyleavingoutdisjointsubsets.Then10overlappingtrainingsetscanbedividedromlyinto10disjointsubsets.Then10overlappingtrainingsetscanbeconstructedbypingoutadifferentisusedtoconstructtrainingsetsftenfoldcrossvalidationsoens
15、emblesconstructedinthiswayaresometimescalledcrossvalidatedcommittees(ParmantoMunroDoyle1996).ThethirdmethodfmanipulatingthetrainingsetisillustratedbytheADABOOSTalgithmdevelopedbyFreundSchapire(19961995)showninfigure2.Lik
16、ebaggingADABOOSTmanipulatesthetrainingexamplestogeneratemultiplehypotheses.ADABOOSTmaintainsaprobabilitydistributionpi(x)overthetrainingexamples.Ineachiterationiitdrawsatrainingsetofsizembysamplingwithreplacementaccdingt
17、otheprobabilitydistributionpi(x).Thelearningalgithmisthenappliedtoproduceaclassifierhi.Theerrrate£iofthisclassifieronthetrainingexamples(weightedaccdingtopi(x))iscomputedusedtoadjusttheprobabilitydistributiononthetrainin
18、gexamples.(Infigure2notethattheprobabilitydistributionisobtainedbynmalizingasetofweightswi(i)overthetrainingexamples.)Theeffectofthechangeinweightsistoplacemeweightonexamplesthatweremisclassifiedbyhilessweightonexamplest
19、hatwerecrectlyclassified.InsubsequentiterationstherefeADABOOSTconstructsprogressivelymedifficultlearningproblems.Thefinalclassifierhiisconstructsbyaweightedvoteoftheindividualclassifiers.Eachclassifierisweightedaccdingto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--微型機器
- 機器人外文翻譯
- 外文翻譯--機器和機器零件的設(shè)計
- 外文翻譯---工業(yè)機器人外文翻譯(含word版的)
- 機器人設(shè)計外文翻譯
- 機器人外文翻譯.docx
- 機器人外文翻譯.docx
- 機器人外文翻譯.doc
- 外文翻譯--機器人.doc
- 外文翻譯--機器人.doc
- 外文翻譯--機器人.doc
- 外文翻譯---工業(yè)機器人外文翻譯(含word版的).pdf
- 機器人語音識別算法的研究外文翻譯
- 工業(yè)機器人外文翻譯
- 外文翻譯--機構(gòu)和機器原理
- 機器人外文翻譯.docx
- 機器人外文翻譯.docx
- 外文翻譯--機器人.doc
- 外文翻譯--機器人.doc
- 機器人外文翻譯.doc
評論
0/150
提交評論