版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、語(yǔ)音識(shí)別是人工智能的重要分支和一項(xiàng)重要的人機(jī)交互技術(shù),被廣泛的應(yīng)用到各種生活場(chǎng)景中。當(dāng)前的語(yǔ)音識(shí)別系統(tǒng)在純凈無(wú)噪的環(huán)境下的準(zhǔn)確率已經(jīng)超過(guò)了人的聽(tīng)覺(jué),然而,真實(shí)應(yīng)用場(chǎng)景中的復(fù)雜的環(huán)境因素對(duì)語(yǔ)音識(shí)別系統(tǒng)的準(zhǔn)確度帶來(lái)的影響,以及在開(kāi)發(fā)階段訓(xùn)練語(yǔ)音識(shí)別模型所消耗的時(shí)間成本與計(jì)算成本,成為阻礙語(yǔ)音識(shí)別發(fā)展的難題,因此,快速訓(xùn)練語(yǔ)音識(shí)別模型的同時(shí)提高識(shí)別率是語(yǔ)音識(shí)別的重要研究課題。
本文主要研究如何在加快神經(jīng)網(wǎng)絡(luò)訓(xùn)練速度與解碼速度的前提下
2、提高語(yǔ)音識(shí)別模型的準(zhǔn)確率。神經(jīng)網(wǎng)絡(luò)的黑盒性與不可解釋性是改進(jìn)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的主要難題,本文使用可視化的方式,對(duì)神經(jīng)網(wǎng)絡(luò)的內(nèi)部結(jié)構(gòu)進(jìn)行研究,基于可視化的結(jié)果分析了導(dǎo)致網(wǎng)絡(luò)精度低與訓(xùn)練速度慢的主要原因。
本文的研究工作主要由以下三個(gè)部分組成:第一部分,提出了一種基于跨層值傳遞的深度神經(jīng)網(wǎng)絡(luò)。深度神經(jīng)網(wǎng)絡(luò)的層數(shù)和參數(shù)的增加,可以有效的抑制過(guò)擬合的現(xiàn)象,而層數(shù)過(guò)深導(dǎo)致的直接問(wèn)題是:信息在傳遞的過(guò)程中的損失。本文通過(guò)深度神經(jīng)網(wǎng)絡(luò)隱藏層的研
3、究,提出了一種基于跨層值傳遞的神經(jīng)網(wǎng)絡(luò),經(jīng)驗(yàn)證該方法可以有效的防止信息在傳遞過(guò)程中的損失,提升神經(jīng)網(wǎng)絡(luò)的精度。第二部分,提出了一種二值化與線性表示結(jié)合的方法加速循環(huán)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與解碼。循環(huán)神經(jīng)網(wǎng)絡(luò)內(nèi)部復(fù)雜的結(jié)構(gòu)是導(dǎo)致神經(jīng)網(wǎng)絡(luò)訓(xùn)練與解碼速度慢的直接因素,本文基于對(duì)循環(huán)神經(jīng)網(wǎng)絡(luò)中的門(mén)的研究,提出了二值化與線性表示相結(jié)合的訓(xùn)練方法,經(jīng)驗(yàn)證該方法可以做到在只損失少量精度的前提下加速神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與解碼。第三部分,將以上兩種方式結(jié)合,提出了基于
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于復(fù)合神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別研究.pdf
- 基于人工神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)語(yǔ)音識(shí)別算法的研究.pdf
- 基于卷積神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別研究.pdf
- 基于RBF神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別研究.pdf
- 基于深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別在WinCE上的實(shí)現(xiàn)和優(yōu)化.pdf
- 基于深度神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別模型研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別技術(shù)研究與實(shí)現(xiàn).pdf
- 基于神經(jīng)網(wǎng)絡(luò)的語(yǔ)音情感識(shí)別技術(shù)研究.pdf
- 基于深層神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別聲學(xué)建模研究.pdf
- 基于回歸神經(jīng)網(wǎng)絡(luò)方法的孤立詞語(yǔ)音識(shí)別.pdf
- 基于回歸神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別抗噪研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別魯棒性研究.pdf
- 基于自組織神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)-HMM的語(yǔ)音識(shí)別算法的研究.pdf
- 優(yōu)化RBF神經(jīng)網(wǎng)絡(luò)用于語(yǔ)音識(shí)別的研究.pdf
- 基于循環(huán)神經(jīng)網(wǎng)絡(luò)的聲學(xué)車(chē)型識(shí)別研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的語(yǔ)音識(shí)別聲學(xué)模型壓縮研究.pdf
- 基于深度神經(jīng)網(wǎng)絡(luò)的RASR語(yǔ)音識(shí)別的研究.pdf
評(píng)論
0/150
提交評(píng)論