版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、Boltzmann方程是描述時間和空間演化的最著名和成功的數(shù)學(xué)模型,從統(tǒng)計學(xué)的角度看就是描述稀薄氣體中粒子的位置和速度的分布函數(shù)的最好數(shù)學(xué)模型。這一燈方程,是十分優(yōu)美的,它們是分析流體的熱力學(xué)牲的強大工具,同時也是解決流體動力學(xué)問題的強大工具,它些和現(xiàn)代技術(shù)都是十分相關(guān)的。 Boltzmann方程存在性和唯一性最早是在1957年由Carleman提出的〔1〕,1972年,L.Arkeryd在對初始值作了一定假設(shè)的條件下,在L1空
2、間中建立了存在性理論〔2〕。其中一個結(jié)果的證明是基于弱穩(wěn)定性結(jié)果和Povzner不等式〔2,3〕,另外一個結(jié)果的證明則依賴于單調(diào)性方法〔4〕。隨后有很多作者研究 了空間齊次的Boltzmann方程解的唯一性問題〔2,5,6,7〕,然而比較完善的結(jié)果是由S.Mischer和B.Wennberg近期給一的〔8〕。1988年R.J.Diperna和P.L.lions考慮了具有Forkker-Planck型算子攏動是的空間非齊次Boltzman
3、n方程,證明了該方程的一種弱解的整體存在性〔9,10,11〕。2004年。L.M.Gamba,V.Panferov和C.Villani對空間齊次的Forkker-Planck-Boltzmann方程進行了研究,在一定條件下證明了解的存在性唯一性〔12〕。 本文研究:1.空間均勻的Fokker-Planck-Boltzmann方程。地滿足質(zhì)量和動量守恒以及能量線性增長的解,給出了其在任何時間區(qū)間〔δ,T〕(0,∞)上的加權(quán)L1和L
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 41106.vlasovpoisson方程弱解的正則性和唯一性
- 周期區(qū)域Boltzmann人口方程解的存在唯一性.pdf
- Boltzmann方程的一維Ianiro-Lebowitz模型解的存在唯一性.pdf
- 退化橢圓方程很弱解的正則性及唯一性問題.pdf
- 關(guān)于max-av模糊關(guān)系方程解的唯一性及正則性的研究.pdf
- 散度型二階線性拋物方程弱解的存在性與唯一性.pdf
- 41486.關(guān)于maxlukasiewicztnorm模糊關(guān)系方程解的唯一性及矩陣強正則性的研究
- Duffing型方程的周期解的存在唯一性和數(shù)值解法.pdf
- Caputo型分數(shù)階微分方程初值問題解的存在性與唯一性.pdf
- 時滯微分方程的周期解的存在性與唯一性.pdf
- Helmholtz方程混合邊值問題解的存在性和唯一性.pdf
- 幾類隱式微分方程解的存在性與唯一性.pdf
- 幾類脈沖微分方程正解的存在唯一性
- 幾類微分方程與積分方程解的存在唯一性研究
- 一類半線性雙曲型方程解的存在唯一性.pdf
- 隨機微分方程的強解存在唯一性定理.pdf
- 28145.一維chernsimonsdirac方程組弱解的唯一性
- 一維非彈性Kac方程經(jīng)典解的存在唯一性.pdf
- 亞純函數(shù)的唯一性.pdf
- 分數(shù)隨機微分方程解的存在唯一性.pdf
評論
0/150
提交評論