

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、近年我國物流行業(yè)高速的發(fā)展,已經(jīng)成為國民經(jīng)濟(jì)中一個重要的支柱產(chǎn)業(yè)。物流行業(yè)廣闊的市場潛力,對港口的發(fā)展起著巨大的促進(jìn)作用。作為全球綜合運輸系統(tǒng)的節(jié)點,港口的效率、服務(wù)水平及可靠性是非常關(guān)鍵的因素。本文以改善港口資源的有效分配,降低費用成本,提高港口設(shè)備資源利用率為目標(biāo),結(jié)合港口生產(chǎn)中的各種約束條件以及粒子群優(yōu)化算法(PSO)的基本理論,深入分析港口生產(chǎn)調(diào)度作業(yè)過程的優(yōu)化方法。論文的主要工作有: 首先,在分析研究港口生產(chǎn)過程的基礎(chǔ)
2、上,以所有船舶總在港時間最短為目標(biāo)函數(shù),建立了港口泊位作業(yè)數(shù)學(xué)模型和拖輪作業(yè)數(shù)學(xué)模型,根據(jù)模型的特點和各個參數(shù)的物理意義及其相互關(guān)系得出了港口調(diào)度數(shù)學(xué)模型必須滿足的約束條件,該模型充分考慮了港口調(diào)度的隨機(jī)性和其它影響因素,比較客觀地反映港口調(diào)度的實際運行情況。 其次,本文利用多目標(biāo)粒子群算法(MOPSO)對港口調(diào)度問題數(shù)學(xué)模型進(jìn)行最優(yōu)求解。PSO算法屬于群集計算智能中具有代表性的優(yōu)化算法之一,是一種基于群智能方法的演化計算技術(shù),
3、具有簡單容易實現(xiàn)并且沒有許多參數(shù)需要調(diào)整的優(yōu)點。在本文的算法實現(xiàn)中,利用線性遞減權(quán)值策略,調(diào)整粒子的全局搜索和局部搜索能力,并用一種最優(yōu)解評估選取的PSO算法進(jìn)行多目標(biāo)優(yōu)化問題的非劣最優(yōu)解集的搜索。通過建立的港口調(diào)度問題的兩個目標(biāo)函數(shù)來共同指導(dǎo)粒子的飛行,對PSO算法全局極值和個體極值的選取方式進(jìn)行改進(jìn),使其最終落入非劣最優(yōu)目標(biāo)域,從而得到最終的港口設(shè)備資源的最優(yōu)化分配方案。 最后,采用統(tǒng)一建模語言(UML)建模方法進(jìn)行港口調(diào)度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于粒子群優(yōu)化的多目標(biāo)車間調(diào)度算法.pdf
- 基于粒子群算法的多目標(biāo)車間調(diào)度的研究.pdf
- 多目標(biāo)柔性調(diào)度問題的并行粒子群算法的分析與實現(xiàn).pdf
- 基于系統(tǒng)協(xié)調(diào)粒子群算法的電力系統(tǒng)多目標(biāo)優(yōu)化調(diào)度研究.pdf
- 基于混合粒子群算法多目標(biāo)柔性作業(yè)車間調(diào)度問題研究.pdf
- 基于粒子群算法的微電網(wǎng)多目標(biāo)經(jīng)濟(jì)調(diào)度模型研究.pdf
- 基于多目標(biāo)優(yōu)化的粒子群算法研究.pdf
- 基于多目標(biāo)粒子群優(yōu)化算法的圖像分割算法.pdf
- 基于改進(jìn)粒子群算法的多目標(biāo)優(yōu)化研究.pdf
- 多目標(biāo)粒子群優(yōu)化算法的研究.pdf
- 基于粒子群優(yōu)化的多目標(biāo)服務(wù)選擇算法及其實現(xiàn).pdf
- 基于啟發(fā)式規(guī)則與粒子群算法的微網(wǎng)多目標(biāo)優(yōu)化調(diào)度.pdf
- 粒子群多目標(biāo)優(yōu)化算法的研究與應(yīng)用.pdf
- 多目標(biāo)粒子群優(yōu)化算法的改進(jìn)與研究.pdf
- 基于粒子群優(yōu)化的離散多目標(biāo)優(yōu)化算法.pdf
- 基于粒子群算法的橋墩多目標(biāo)優(yōu)化設(shè)計方法研究.pdf
- 改進(jìn)多目標(biāo)粒子群優(yōu)化算法的實現(xiàn)及應(yīng)用.pdf
- 云環(huán)境下基于多目標(biāo)粒子群的工作流調(diào)度算法研究.pdf
- 基于粒子群算法的多目標(biāo)函數(shù)優(yōu)化問題研究.pdf
- 基于量子衍生方法的粒子群多目標(biāo)優(yōu)化算法.pdf
評論
0/150
提交評論