版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、數(shù)據(jù)挖掘又稱數(shù)據(jù)庫中知識發(fā)現(xiàn),是從大量數(shù)據(jù)中用非平凡的方法發(fā)現(xiàn)有用的知識。分類是數(shù)據(jù)挖掘中的一項非常重要的任務,在商業(yè)、金融、電訊、DNA分析、科學研究等諸多領域具有廣泛的應用。統(tǒng)計學、機器學習、神經(jīng)網(wǎng)絡等領域的研究者提出了很多分類方法,大部分算法是內(nèi)存駐留算法,適用于小型數(shù)據(jù)集。隨著數(shù)據(jù)集的數(shù)據(jù)量和維數(shù)的增加,建立高效的、適用于大型數(shù)據(jù)集的分類法已成為數(shù)據(jù)挖掘的一個挑戰(zhàn)性任務。 基于顯露模式(EmergingPattern,E
2、P)的分類方法是針對大型數(shù)據(jù)集的分類提出的,EP是G.Dong和J.Li提出的一種新的知識模式,這些模式能夠捕獲目標類和非目標類上多組屬性之間的不同,具有很好的分類性能。第一個基于EP的分類算法是G.Dong等提出的CAEP算法,此后相繼提出了JEP-Classifier、BCEP和DeEPs等一系列基于EP的分類算法。相關(guān)研究表明,基于EP的分類算法的平均分類準確率優(yōu)于決策樹等傳統(tǒng)算法,顯示了EP在分類方面的優(yōu)越性。 本文提出
3、了一種可調(diào)整權(quán)值的基于EP的分類方法CEPAW。CEPAW使用基本顯露模式(eEP)并聚合eEP的區(qū)分能力建立分類器。在聚合eEP的區(qū)分能力時,eEP的權(quán)值通過訓練自適應地選取。訓練分為兩個階段:第一階段的主要任務是挖掘eEPs,構(gòu)造初始分類器。在EP的選取以及評分函數(shù)方面,我們都采用了不同于以往的基于EP的分類算法的方法。第二階段是權(quán)值的自適應調(diào)整。開始,所有EP的權(quán)值相同。反復地使用初始分類器對訓練樣本進行分類,并通過考察每個EP對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于EP的多分類器表決分類算法.pdf
- 基于EP的數(shù)據(jù)流分類算法研究.pdf
- 基于EP模式的高維數(shù)據(jù)分類算法研究.pdf
- Boosting基于EP的分類器提高分類準確率.pdf
- 基于分類器算法的行人檢測研究.pdf
- 基于級聯(lián)分類器的跟蹤算法研究.pdf
- 基于Adaboost算法訓練分類器的研究及其在人臉檢測中的應用.pdf
- 基于貝葉斯分類器的圖像標注算法研究.pdf
- 基于SVM算法的文本分類器的實現(xiàn).pdf
- 基于集成分類器的數(shù)據(jù)流分類算法研究.pdf
- 基于多分類器融合的高光譜圖像分類算法研究.pdf
- 基于SVM分類器的分步定位算法研究.pdf
- 基于網(wǎng)絡處理器的包分類算法.pdf
- 分類器優(yōu)化算法的研究.pdf
- 基于多分類器融合的數(shù)據(jù)挖掘分類算法研究與應用.pdf
- 基于回歸算法的人臉識別分類器設計.pdf
- 基于集成模糊分類器的交通狀態(tài)判別算法
- 基于樹狀分類器的指紋識別算法研究.pdf
- 基于最小化訓練誤差的子空間分類算法研究.pdf
- 基于多分類器集成的聚類算法研究.pdf
評論
0/150
提交評論