版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 外文資料翻譯及原文</b></p><p><b> 1、譯文</b></p><p> 對使用合成酯類潤滑油生態(tài)毒理學特性的影響評估</p><p> GUDRUN MAXAM, STEFAN HAHN, WOLFGANG DOTT AND ADOLF EISENTRAEGER RWT
2、H Aachen, 衛(wèi)生和環(huán)境醫(yī)學研究所, Pauwelsstr.30 D-52057Aachen, 德國,2002年5月28日接受</p><p> 摘要:合成酯潤滑劑需要有關它們的技術和生態(tài)毒理學特性優(yōu)化。要確定生態(tài)毒性潛力所需要的試驗可以是一個化學品風險評估程序的依據(jù)。目前風險潤滑油的分類進行了新的石油液體,通常在水生物測定應用前準備的液體。為了改善一些潤滑油的生態(tài)毒性的特點,制備方法質量得到優(yōu)化。由此產(chǎn)
3、生的準備協(xié)議導致的石油液體水,可以使用生物測定提取物進行測試。對化學成分的使用,以及由添加劑帶來的生態(tài)毒理學效應引起變化的程度需要審議。為了采取這種不同的使用潤滑油,除了新的石油液體測試的原因外,在這項工作中的各種潤滑油樣品進行了分析與標準化與弧菌鯢和惡臭假單胞菌,發(fā)光與V.fischeri,生存與大型水蚤和藻類生長與柵藻subspicatus抑制試驗檢測細菌生長抑制試驗檢測。水提物的化學特性包括pH值測定,電導率,重金屬,溶解有機碳,
4、無機陰離子和磷的含量。結果強調環(huán)保的論斷,潤滑油可以接受其在使用生態(tài)毒理學的潛在變化。認為通常添加到基礎油,以提高油品的適用性的一些物質可能具有很高的潛在毒性。</p><p> 關鍵詞:合成酯類潤滑油 生態(tài)毒理學評價 生物測定</p><p> 簡介:在1995年的潤滑油消費總量超過3600萬噸的全球(巴茨,1998年),它們被應用在各領域,如在發(fā)動機或液壓,金屬加工工藝和必須履
5、行的技術要求。潤滑油包括基礎油和提升性能的添加劑。目前超過90%的基礎油是礦物油,一個復雜的混合物含有脂肪族,脂環(huán)族和芳香族碳氫化合物的不同部分。與此相反,在合成酯基礎油是潤滑油更明確的內(nèi)容。如粘度指數(shù)改進劑(egsulfonates,琥珀酸衍生物)腐蝕抑制劑,抗泡沫或抗氧化劑(egphenolic和aminic物質)從不同的物質群衍生劑大多數(shù)添加劑擁有的潛在毒性。</p><p> 現(xiàn)在潤滑油必須符合生態(tài)以及
6、技術要求,因為相對于環(huán)境的感性有所增加。對于這種潤滑油的基礎上優(yōu)化其生態(tài)毒性方面的技術性能和合成酯是可取的。1997年7月聯(lián)合研究中心的“非污染摩擦學系統(tǒng)”(SFB442),由德國研究基金會(DFG)資助經(jīng)費成立。為了提高特殊潤滑油摩擦學職能應轉移到固體表面工具涂層的手段特點的技術。通過增加基礎油穩(wěn)定的合成酯的性能有待改進。</p><p> 該項目“方法和系統(tǒng)的摩擦學和借鑒生態(tài)和環(huán)境醫(yī)學機床的風險評估策略”追
7、求的綜合戰(zhàn)略,同時考慮到兩方面對人類的毒理學和生態(tài)毒理學的潤滑油,以優(yōu)化合成酯基潤滑油有關環(huán)境自然友好以及穩(wěn)定性。為了達到這些是必不可少的,以確定潛在的生態(tài)毒性和使用造成的改造目標。潤滑油的生態(tài)毒理學特性是根據(jù)雙方的質量和數(shù)量的基礎油和種類和數(shù)量的添加劑使用(由主要參數(shù)溫度,時間和材料的應用為特征)的組成,從而可能會影響潤滑油的生態(tài)毒性。重金屬被吸收到潤滑油的磨損。有機化合物是改變了高壓和高溫。工具機械含有的潤滑油有助于新的液體污染。試
8、驗完成,該合成酯基礎環(huán)保的潤滑劑。為了檢測不同的潤滑油可變性,以及由使用引起的變化,為100 g/L的水提取量高的潤滑油。</p><p> 在這項工作的結果呈現(xiàn),這是經(jīng)過優(yōu)化的制備方法申請獲得。該添加劑和使用過程中的化學成分變化的影響進行審查。</p><p> 方法:制備水提取液油</p><p> 水的油樣進行萃取是根據(jù)在圖1介紹的過程。阿石油液體和Mi
9、lliporeTM水(比例1+9)混合攪拌開銷24 h在黑暗DURANTM玻璃瓶(肖特,美因茨,德國)的水提取物是用玻璃纖維過濾器(過濾孔徑1微米; Gelman科學美國密歇根州)過夜后階段的分離。 pH值和電導率測量。油性階段被駁回。生態(tài)毒理學測試是在14日內(nèi)與水提取雙稀釋系列。樣品儲存于4黑暗DURANTM玻璃瓶C,以便避免光化學反應。</p><p> 與惡臭假單胞菌和弧菌鯢生長抑制實驗都是用微孔板光度計
10、和孵化器(IEMS閱讀器,Labsystems,芬蘭),最終檢驗量為200μL/孔。相對于標準測試程序(DIN38412 L37,1999; ISO10712,1995)的V.fischeri和P.putida細胞冷保存文化用于接種(施密茨等人,1998年)的微孔板光度計放置在柜(Multitron,Infors,瑞士)進行冷卻。該項測試是在20℃(V.fischeri)和21℃(P.putida)分別按標準程序。IEMS讀者的執(zhí)行為1
11、毫米,1000 RPM震動頻率振幅軌道運動。與此相反的標準協(xié)議的光密度測量在20分鐘的時間間隔為450納米。該區(qū)間被劃分為2分10期。該板塊動搖約30秒/周期,以防止細胞造粒(施密茨等人,1998年),每個水提取物,生長控制和空白稀釋在三個測試重復。</p><p> 急性發(fā)光與V.fischeri,藻類生長與柵藻subspicatus抑制試驗和大型蚤的生存抑制實驗測試按標準執(zhí)行程序(DW EN ISO1134
12、8-1,-2,-3,1999; EN28692,1993; ISO6341,1996)的潤滑劑樣品,控制和空白的水提取物有兩種測試重復。</p><p> 對測試結果表示為LID值。LID值是最低的無效稀釋。LID表示最高濃度測試樣品在該批次為急性發(fā)光與V.fischeri,藻類生長與S.subspicatus抑制試驗抑制試驗抑制小于20%,與V.fischeri生長抑制試驗和P.putida和10的D.mag
13、na生存考驗分別%已被觀察到。</p><p> 物理化學特性的水提物:pH值和電導率測量電化學。重金屬分析原子吸收光譜(DIN38406 T1,6,7,8,10,11,19;1981±1993),與石墨爐(銅)和阻燃技術(鋅)鐵含量估計光度。溶解有機碳(DOC)檢測到了TOC分析儀(參數(shù)及C型墊5500,Stroehlein)的無機陰離子均采用離子色譜法(DIN38405 T19,1988),磷含量
14、的檢測按ICP / OES方法。</p><p> 結果:在這項工作中的結果僅代表在聯(lián)合研究中心“SFB442”過程中收集數(shù)據(jù)的一小部分的新型液壓生態(tài)毒理學特性和新的齒輪油,結果如圖2所示。</p><p> 這兩種潤滑油是基于合成酯和無污染的分類。兩種不同提取物的制備,不同的潤滑油和MilliporeTM水部分。顯然,水提取物,那是只有100毫克/升MilliporeTM分別顯示沒有
15、水或溫和的生態(tài)毒理學效應。該提取物D.magna生存考驗LID值沒有記錄(與"×"),明顯,因為該測試機體抑制高于10%,為確定本次測試另一個水提物的蓋子價值少于100毫克/升,必須準備和測試。</p><p> 與此相反,用100 g / L的MilliporeTM水準備的提取物具有抑制在S.subspicatus測試,D.magna生存考驗和與V.fischeri發(fā)光抑制試驗高
16、毒性的潛力。</p><p> 圖3展示了環(huán)保的切削油的使用和不使用添加劑以及它的變化,由于使用生態(tài)毒理學效應。</p><p> 在新的切削油基礎油僅顯示溫和的D.magna毒性作用,而且不會對測試的其他生物的影響。使用后(鉆孔和切割好幾個小時)的蓋子值在藻類試驗和測試的D.magna顯著增加已被觀察到的樣本內(nèi)U1。</p><p> 此外對添加劑的影響顯示
17、在圖3,各種物質除了導致了樣品的生態(tài)毒理學的潛在增加權的一部分。在U2后填充到機床和樣品U3的潤滑劑采取樣本是30小時后直接鉆孔和切割(圖3),而使用后的切削油的毒性是與V.fischeri發(fā)光的抑制試驗異常高,從64降低到32。該藻類測試部分不評估的,因為在與藻類熒光干擾的水提取物目前熒光成分。</p><p> 重金屬和磷的切削油的水提取物含量列于圖4。</p><p> 水提取磷
18、含量下降,從669到346毫克/克在使用過程中同時,有一種如銅,鋅,鎳重金屬含量顯著的攝入量。</p><p> 此外,并沒有與各種潤滑油的物理化學特性見表1。</p><p> 該添加劑均對檢查參數(shù)決定性的影響。pH值降低,導電性以及對DOC的內(nèi)容已乘幾次。</p><p><b> 結論</b></p><p>
19、; 一個新的準備過程已經(jīng)提出,導致一個具有水溶性物質的高濃度,同時沒有像油滴不溶顆粒水提取物。它允許的,即使所謂的環(huán)保標準的合成潤滑油脂毒性作用敏感的決心。此外,它還可以區(qū)分影響的基礎油和添加劑的毒性分別。通過使用所造成的毒性變化是有據(jù)可查的。對重金屬的明顯上升是由于機床污染(見樣本U2,圖4),并在使用過程中的金屬摩擦的發(fā)生。然而,重金屬含量不似乎內(nèi),特別是與V.fischeri發(fā)光抑制法(施密茨等人,1999年)的測試系統(tǒng)所顯示的
20、高毒性負責,它更有可能,即由于改建潤滑油氧化過程,高溫和高壓是觀測到的影響負責。另一方面對新的潤滑劑高水提取物在使用過程中磷含量下降了一半。這可以歸因于對添加劑濃度的變化。</p><p> 生物測試系統(tǒng)已建立了各種物質和環(huán)境樣品(布萊斯,1998;多特等,1999; Eisentraeger等,1997; Eisentraeger和洪特,2000; Keddy等,1995)的微型生物測試系統(tǒng)在這項研究中所使用
21、的油流體之間的微小變化檢測合適。由于測試生物體的特定敏感,不同的測試系統(tǒng)透露具體的回應的成分和油樣分別。與S.subspicatus生長抑制試驗似乎是為對合成酯基潤滑劑生態(tài)毒理學電位檢查合適。該潤滑油在這個測試生物體的影響需要進一步研究,以發(fā)現(xiàn)潛在的機制。進一步驗證了生物測定與像油成分對照品是必要的。</p><p> 很明顯,有可能轉移到水相流體油毒理學相關的物質,以模擬與制備方法提出了最壞的情況。生物利用度
22、和潛在毒性的樣品是由水提取成分。而復雜的混合物的水溶性,通常受到限制。另一方面單個組件的不同溶解度可能導致部分到一個在水相中微量成分的積累。這可能導致在曖昧的稀釋率(Steinhaeuser等,1989; Steinhaeuser,1992; Steinhaeuser和阿曼,1992年)的依賴毒性反應,作為一般規(guī)則的制定潤滑劑,在水中安置部分主要材料可能是添加劑(貝內(nèi)特等人,1990年)的攝入量和毒理學相關組件配制后的濃度會勉強有助于原
23、始樣本,但它代表的水提取生態(tài)毒性的潛力。目前沒有對原油的飽和水油,潤滑油和sparely可溶性物質溶于組分制備的標準程序確實存在(Eismann等,1991; Girling,1989),通常的潤滑劑生態(tài)毒理學風險評估的基礎上的法律與未使用的油進行了。</p><p> 所提出的方法可以使用,以提高潤滑油的生態(tài)毒理學特性。在建議的制備方法有可能檢測的潤滑油在使用過程中成分的改變。該添加劑對生態(tài)毒性的影響可以證明
24、。對于一個基于合成酯為基礎的環(huán)保標準潤滑油優(yōu)化的質量和數(shù)量增加的物質都必須考慮。在基礎油化學變化,應對基礎油以轉讓成添加劑的特點。</p><p><b> 2、譯文對應的外文</b></p><p> Assessment of the Influence of Use on Ecotoxicological Characteristics of Synthet
25、ic Ester Lubricants</p><p> GUDRUN MAXAM, STEFAN HAHN, WOLFGANG DOTT AND ADOLF EISENTRAEGER RWTH Aachen, Institute of Hygiene and Environmental Medicine, Pauwelsstr.30 D-52057Aachen, Germany,</p><
26、;p> Accepted 28 May 2002</p><p> Abstract. Synthetic ester lubricants need optimisation about their technical and their ecotoxicological characteristics. To determine the ecotoxicological potential the
27、 required examinations can be based on the procedure for a risk assessment of chemicals. At present risk classification of lubricant oils is carried out with new oil fluids that are normally prepared before application i
28、n aqueous bioassays. In order to improve the ecotoxicological characteristics of some lubricant oils, the quali</p><p> Keywords: synthetic ester lubricants; ecotoxicological assessment; bioassays</p>
29、<p> Introduction</p><p> The total consumption of lubricants in 1995 exceeded 36 million tons worldwide(Bartz,1998).They are used for various applications, like in engines or hydraulic and metal wo
30、rking processes and have to fulfil the technical requirements. Lubricants consist of a base oil and performance-enhancing additives. At present more than 90% of the base oils are mineral oils, a complex mixture containin
31、g varying portions of aliphatic, cycloaliphatic and aromatic hydrocarbons. In contrast to this, lubricant oi</p><p> Nowadays lubricants have to fulfil ecological as well as technical requirements, since th
32、e sensibility with respect to the environment has increased. For this the optimisation of lubricants based on synthetic esters with regard to their ecotoxicological and technical properties is desirable. In July 1997 the
33、 joint research centre“Non-polluting tribological systems”(SFB 442),financed by a grant of the German Research Foundation(DFG)was established. To improve the technical characteristics special</p><p> The pr
34、oject“Methods and strategies for the risk assessment of tribological systems and machine tools referring to ecology and environmental medicine”pursues an integrated strategy, taking both human toxicology and ecotoxicolog
35、y of the lubricants into consideration in order to optimise the synthetic ester based lubricant oils concerning the environmental good-naturedness as well as the stability. To reach these aims it is indispensable to dete
36、rmine the ecotoxicological potential and the alteratio</p><p> In this work results are presented, that were obtained after application of an optimised preparation method. The influence of the additives and
37、 the changes of the chemical composition during the use should be examined.</p><p><b> Methods</b></p><p> Preparation of aqueous extracts of oil fluids</p><p> Water
38、 extractions of the oil samples are performed according to the procedure presented in Fig.1. A mixture of oil fluid and MilliporeTM water(ratio 1+9)is agitated overhead for 24 h in dark DURANTM glass bottles(Schott, Main
39、z, Germany).The aqueous extract is filtered with a glassfiber filter(pore size 1 μm; Gelman Sciences, Michigan, USA)after separation of phases over night. pH and conductivity are measured. The oily phase is dismissed. Ec
40、otoxicological testing is performed within 14 days with</p><p> Growth-inhibition assays with Pseudomonas putida and Vibrio fischeri are performed using microplate photometers and incubators (IEMS-readers,
41、Labsystems, Finland).The final test volume is 200 μl/well. Contrary to the standard test procedures(DIN 38412 L37,1999;ISO 10712,1995)cold-stored cultures of V.fischeri and P.putida cells are used for inoculation(Schmitz
42、 et al.,1998).The microplate photometers are placed in cabinets(Multitron, Infors, Switzerland)for cooling. The tests are performed at 20℃</p><p> Acute luminescence inhibition assays with V.fischeri, algal
43、 growth inhibition tests with Scenedesmus subspicatus, and Daphnia magna survival tests are performed according to standard procedures (DW EN ISO 11348-1,-2,-3,1999;EN 28692,1993;ISO 6341,1996).The water extracts of the
44、lubricant samples, the controls and the blanks are tested in two replicates.</p><p> The results of the tests are expressed as LID-values. The LID-value is the lowest ineffective dilution. The LID expresses
45、 the test batch with the highest sample concentration at which an inhibition of less than 20%for the acute luminescence inhibition assay with V.fischeri, the algal growth inhibition test with S.subspicatus, and the growt
46、h inhibition tests with V.fischeri and P.putida and 10%for the D.magna survival test respectively has been observed.</p><p> Physico-chemical characterisation of the aqueous extracts</p><p> p
47、H and conductivity are measured electrochemically. Heavy metals are analysed by atomic absorption spectroscopy(DIN 38406 T 1,6,7,8,10,11,19;1981±1993)with graphite furnace(Cu)and flame techniques(Zn).Iron content is
48、 estimated photometrically. The dissolved organic carbon (DOC) is detected with a TOC-analyser(modell C-mat 5500,Stroehlein).The anorganic anions are measured using ion chromatography(DIN 38405 T19,1988).The phosphorus c
49、ontent is detected according the ICP/OES method.</p><p><b> Results</b></p><p> The results shown in this work represent only a small part of the data gathered in the course of the
50、 joint research centre“SFB 442”.The results of the ecotoxicological characterisation of a new hydraulic and a new gear oil are shown in Fig.2.</p><p> Both lubricants are based on synthetic esters and class
51、ified as non-polluting. Two different extracts were prepared, varying the portion of lubricant oil and MilliporeTM water.Obviously, the aqueous extracts, that were prepared with only 100 mg/L MilliporeTM water show no or
52、 a moderate ecotoxicological effect, respectively. The LID-value of the D.magna survival test of the extracts was not recorded(marked with“×”),because the inhibition of the test organism was higher than 10%.To deter
53、mine the L</p><p> In contrast to this, the extracts prepared with 100 g/L MilliporeTM water possess a high toxicological potential in the S.subspicatus inhibition test, the D.magna survival test and the lu
54、minescence inhibition test with V.fischeri.</p><p> Figure 3 demonstrates the ecotoxicological effects of an environmentally acceptable cutting oil with and without additives as well as its changes due to u
55、sage.</p><p> The new base fluid of the cutting oil shows only a moderate toxic effect on D.magna and no effect on the other organisms tested. After usage(drilling and cutting for several hours)a significan
56、t increase of the LID-values in the algal assay and the D.magna test has been observed within the sample U1.</p><p> Furthermore the influence of the additives is shown on the right part of Fig.3.The additi
57、on of various substances leads to an increase of the ecotoxicological potential of the samples. The sample U2 was taken after filling the lubricant into the machine tool and sample U3 was taken directly after 30 h drilli
58、ng and cutting (Fig.3).The toxicity of the cutting oil after usage is higher with exception of the luminescence inhibition test with V.fischeri, which decreases from 64 to 32.The algal tests </p><p> The he
59、avy metal and phosphorus contents of the water extracts of the cutting oil are given in Fig.4.</p><p> The water extractable content of phosphorus decreases during usage from 669 to 346 mg/g. At the same ti
60、me there is a significant intake of heavy metals like copper, zinc and nickel.</p><p> The physico-chemical characteristics of various lubricant oils with and without addition are shown in Table 1.</p>
61、;<p> The additives have a decisive influence on the examined parameters. The pH decreases and the conductivity as well as the content of DOC has been multiplied several times.</p><p> Discussion<
62、;/p><p> A new preparation procedure has been proposed that leads to an aqueous extract with a high concentration of water soluble substances and simultaneously no undissolved particles like oil drops. It allo
63、ws a sensitive determination of toxic effects of even the so called environmentally acceptable synthetic ester lubricants. Additionally, it is possible to distinguish between the influence on the toxicity of the base oil
64、 and the additives, respectively. The change of toxicity caused by usage is well</p><p> Biological test systems have been established for various substances and environmental samples (Blaise,1998;Dott et a
65、l.,1999;Eisentraeger et al.,1997;Eisentraeger and Hund,2000;Keddy et al.,1995).The miniaturised biological test systems used in this study are suitable for the detection of small variations between the oil fluids. Due to
66、 the specific sensitivities of the test-organisms, the different test systems revealed specific responses to the ingredients and the oil samples, respectively. The</p><p> Obviously, it is possible to trans
67、fer toxicologically relevant substances of the fluid oils into the aqueous phase in order to simulate a worst case scenario with the presented preparation method. The bioavailability and the toxic potential of a sample a
68、re determined by the water extractable components. The water solubility of the complex mixture is usually restricted. On the other hand different solubilities of single components may in part lead to an accumulation of m
69、inor ingredients in the aq</p><p> The presented approach can be used in order to improve the ecotoxicological properties of the lubricants. With the proposed preparation method it is possible to detect alt
70、erations in the composition of lubricants during usage. The influence of the additives on ecotoxicity can be proved. For an optimisation of the environmentally acceptable lubricants based on synthetic esters the quality
71、and quantity of the added substances have to be taken into consideration. The base oils should be chemically </p><p> Acknowledgements</p><p> This work is supported by a grand of the German R
72、esearch Foundation (SFB 442“Non-polluting tribological systems”; project“Methods and concepts for the risk assessment of tribological systems and machine tools referring to ecology and environmental medicine”).The new-an
73、d used-oil samples were kindly put to our disposal by the“Institut fuer fluidtechnische Antriebe”and the“Lehrstuhl fuer Technologie der Fertigungsverfahren”of the RWTH Aachen. The content of phosphorus was kindly measure
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生態(tài)毒理學
- 綠色酯類潤滑油基礎油的合成及性能研究.pdf
- 卡馬西平對虹鱒的生態(tài)毒理學影響.pdf
- 肝臟毒理學、腎臟毒理學
- 潤滑油使用技術指南
- 外文翻譯---潤滑油在制冷中的效用
- 外文翻譯---潤滑油在制冷中的效用
- 外文翻譯---潤滑油在制冷中的效用
- 《生態(tài)毒理學》教學大綱
- 利尿酸對書虱生態(tài)適合度及GSTs毒理學特性的影響.pdf
- 《潤滑油使用技術指南》講座
- 潤滑油爬移對表面潤滑特性的影響.pdf
- 衛(wèi)生毒理學生殖毒理學
- 納米碳球在合成酯類潤滑油中抗磨性能研究.pdf
- 《潤滑油使用技術指南》講座
- 食品毒理學食品毒理學實訓
- 外文翻譯---潤滑油在制冷中的效用.docx
- 外文翻譯---潤滑油在制冷中的效用.docx
- 半導體催化劑對酯類潤滑油的光降解研究.pdf
- 洛克沙胂對鯽魚生態(tài)毒理學指標的影響.pdf
評論
0/150
提交評論