神經(jīng)隨機(jī)匯池網(wǎng)絡(luò)的信息傳遞研究.pdf_第1頁(yè)
已閱讀1頁(yè),還剩45頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、分類號(hào):TN911.7 密級(jí):公開(kāi)UDC:621.39 學(xué)校代碼:11065碩士學(xué)位論文神經(jīng)隨機(jī)匯池網(wǎng)絡(luò)的信息傳遞研究 神經(jīng)隨機(jī)匯池網(wǎng)絡(luò)的信息傳遞研究王慧指 導(dǎo) 教 師 段法兵教授學(xué)科專業(yè)名稱 系 統(tǒng) 理 論論文答辯日期 2017 年 5 月 24 日IIAbstractThis thesis employs the measures of the mean mutual information and thestimulus-spec

2、ific information to explore the performance of information transmissionof the stochastic pooling networks composed of saturating synaptic neurons or theIntegrate-and-Fire neurons. It is noted that the stimuli are the det

3、erministic aperiodicor the speech signals, while the internal noise is with Gamma or Gaussiandistributions. First, in saturating synaptic neural networks, it applies the aperiodicsignal as the input signal, selects Gamma

4、 noise to simulate the internal noise in nervecells. The results of the measure of the mean mutual information and thestimulus-specific information demonstrate that the noise-enhanced effect ofinformation transmission ap

5、pears in the heterogeneous stochastic pooling networkswith multi-synaptic excitatory and inhibitory pathways. Second, we also take themeasure of the mean mutual information and the stimulus-specific information toexplore

6、 the stochastic resonance effect in the Integrate-and-Fire neural stochasticpooling networks by transmitting the speech signal. The main purpose is to analyzethe effect of information transmission caused by noise intensi

7、ty and the number of theIntegrate-and-Fire neurons. Third, according to the actual data experiment, it provesthat, as the internal noise intensity increases, the neurons have a better response to theinput signal, wherein

8、 the mean mutual information can reach a maximum value in acertain range of noise intensity. It is also shown that the stimulus-specific informationcan measure the coding efficiency in each component of the input signal

9、via theinternal noise enhancement clearly. We argue that the present results are meaningfulto the information-carrying signal transmission in the neurons in future particularly.Keywords: Stochastic pooling networks; Mean

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論