版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、粒子群優(yōu)化算法(PSO)作為一種具有深刻智能背景的群智能優(yōu)化算法,具有結(jié)構(gòu)簡單、調(diào)節(jié)參數(shù)少、易于實現(xiàn)、應(yīng)用靈活等特點,是解決復(fù)雜優(yōu)化問題的有效途徑。因此,分析研究其算法特性與內(nèi)部規(guī)律,進(jìn)一步提高其尋優(yōu)性能具有重要的理論和實際意義。
本文以控制思想為基礎(chǔ),從確定性控制、隨機控制、過程優(yōu)化角度,展開粒子群優(yōu)化算法改進(jìn)研究,具體研究內(nèi)容如下:本文首先介紹了粒子群優(yōu)化算法的基本原理,并系統(tǒng)綜述了算法的理論研究現(xiàn)狀以及國內(nèi)外基于控制思想
2、的粒子群算法研究成果。由于PSO算法的有限代收斂過程可以視為一個控制問題,本文提出基于無模型自適應(yīng)控制的粒子群優(yōu)化算法。即以基本粒子群優(yōu)化算法為基礎(chǔ),以當(dāng)前最優(yōu)位置為設(shè)定值,利用無模型自適應(yīng)控制實現(xiàn)尋優(yōu)過程控制。仿真結(jié)論表明,無模型自適應(yīng)控制器的引入使得算法的收斂速度得到明顯改善,搜索精度得到一定程度的提高。在確定性系統(tǒng)分析的基礎(chǔ)上,考慮算法固有的隨機特性,將PSO算法重新定義為離散不確定時滯系統(tǒng),提出基于時滯相關(guān)不確定系統(tǒng)魯棒控制的P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于控制思想的粒子群優(yōu)化算法改進(jìn)研究.pdf
- 改進(jìn)粒子群優(yōu)化算法的研究.pdf
- 基于粒子群思想改進(jìn)支持向量機優(yōu)化算法的研究.pdf
- 基于改進(jìn)粒子群算法的交通控制算法研究.pdf
- 基于改進(jìn)粒子群優(yōu)化算法的聚類算法研究.pdf
- 粒子群及量子行為粒子群優(yōu)化算法的改進(jìn)研究.pdf
- 改進(jìn)的粒子群優(yōu)化算法.pdf
- 粒子群優(yōu)化算法的改進(jìn)研究.pdf
- 改進(jìn)的粒子群優(yōu)化算法的研究.pdf
- 基于雙種群的改進(jìn)粒子群優(yōu)化算法研究.pdf
- 基于混沌映射的粒子群優(yōu)化算法改進(jìn)研究.pdf
- 基于改進(jìn)粒子群算法的多目標(biāo)優(yōu)化研究.pdf
- 基于改進(jìn)粒子群優(yōu)化的聚類算法研究.pdf
- 基于遺傳思想改進(jìn)的粒子群優(yōu)化算法與應(yīng)用研究.pdf
- 粒子群優(yōu)化算法的研究與改進(jìn).pdf
- 粒子群優(yōu)化算法及其改進(jìn).pdf
- 基于改進(jìn)粒子群算法的可靠性優(yōu)化研究.pdf
- 基于改進(jìn)粒子群算法的曲線曲面優(yōu)化方法研究.pdf
- 粒子群優(yōu)化算法的改進(jìn)方法研究.pdf
- 粒子群優(yōu)化算法的研究和改進(jìn).pdf
評論
0/150
提交評論