

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、圖像在形成、保存與傳輸?shù)倪^程中,由于成像設備、成像環(huán)境、存儲設備及傳輸設備等因素的影響會造成圖像質(zhì)量的退化,圖像復原是從退化圖像中獲得高質(zhì)量的圖像,是圖像處理研究領域一個重要的分支,在視頻監(jiān)控、醫(yī)療成像、衛(wèi)星圖像、高清電視、藝術品修復等領域有著廣泛應用。圖像復原是一個典型的病態(tài)反問題,常采用最優(yōu)化方法求解,為了得到一個更好的解,有效的方法是在復原模型中引入正則項,目前主流的稀疏表示法是將圖像的稀疏先驗作為正則項引入到圖像復原模型中。這種
2、方法往往采用綜合稀疏表示模型,該模型已經(jīng)被研究地比較成熟,而與之相對應的另一種模型——協(xié)稀疏表示模型卻還未受到人們的廣泛關注。
目前與協(xié)稀疏表示模型有關的理論研究主要集中在分析字典的學習上,實際的應用還比較少,成功的更是少數(shù)。該模型的理論研究表明信號具有協(xié)稀疏先驗,本文將此先驗作為正則項引入到圖像復原模型中,圍繞協(xié)稀疏表示模型主要開展了以下工作:
1、研究了協(xié)稀疏表示模型的理論基礎包括分析字典的學習和利用協(xié)稀疏編碼算
3、法重建信號,并與目前被廣泛研究的綜合稀疏表示模型對比。將圖像的協(xié)稀疏先驗作為正則項引入到圖像復原模型中,提出了基于協(xié)稀疏正則化的圖像復原算法,利用基于 L0范數(shù)最小化的協(xié)稀疏編碼重建圖像塊。
2、提出了自適應的字典選擇方法,考慮到待重建圖像塊之間的差異性,我們對訓練樣本分類,訓練多個分析字典,在重建圖像塊時根據(jù)其與訓練樣本類中心的相似度為其選擇一個最佳字典,提高了處理不同子塊的自適應性。
3、提出了基于特征的非局部相
4、似性約束。根據(jù)協(xié)稀疏表示模型,分析字典原子相當于高通濾波器,與信號相乘后的結(jié)果是稀疏的,相當于提取信號的高頻信息。本文在傳統(tǒng)的非局部相似性約束的基礎上進行了改進,利用該高頻信息計算加權系數(shù),進一步提高了重建圖像的質(zhì)量。
4、結(jié)合綜合稀疏表示模型,提出基于綜合稀疏與協(xié)稀疏復合正則化的圖像復原算法。根據(jù)圖像在給定綜合字典下的表示系數(shù)是稀疏的——綜合稀疏,在給定分析字典下的分析系數(shù)也是稀疏的——協(xié)稀疏,將綜合稀疏與協(xié)稀疏這兩個先驗知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于稀疏表示模型的圖像復原技術研究.pdf
- 基于稀疏表示的圖像復原算法研究.pdf
- 圖像稀疏表示模型及其在圖像處理反問題中的應用.pdf
- 信息稀疏表示算法及其在圖像恢復中應用的研究.pdf
- 稀疏信號表示理論及其在圖像增強中的應用.pdf
- 群組稀疏表示理論及其圖像復原算法研究.pdf
- 基于稀疏表示的圖像超分辨率復原研究.pdf
- 稀疏表示在圖像質(zhì)量提高中的應用.pdf
- 圖像的稀疏表示及編碼模型研究.pdf
- 稀疏表示在目標跟蹤中的應用.pdf
- 基于稀疏模型的圖像復原技術研究.pdf
- 圖像復原的模型和稀疏優(yōu)化算法研究.pdf
- 壓縮感知及稀疏性分解在圖像復原中的應用研究.pdf
- 稀疏表示理論的研究及其在圖像去噪中的應用.pdf
- 基于稀疏表示的Criminisi圖像修復及其在缺陷檢測中的應用.pdf
- 稀疏表示編碼模型及其在文本分類中的應用.pdf
- 稀疏表示在圖像壓縮和去噪中的應用研究.pdf
- 稀疏表示在圖像分類問題中的應用研究.pdf
- 稀疏表示在圖像壓縮和去噪中的應用研究(1)
- 稀疏表示及其在信號修復中的應用.pdf
評論
0/150
提交評論