甲醇合成的外文翻譯---酒精溶劑的催化效應(yīng)_第1頁
已閱讀1頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p>  A New Low-Temperature Synthesis Route of Methanol:</p><p>  Catalytic Effect of the Alcoholic Solvent</p><p>  Introduction</p><p>  Gas-phase methanol is being produced

2、industrially by 30-40 million ton per year around the world, from CO/ CO2/H2 at a temperature range of 523-573 K and a pressure range of 50-100 bar, using copper-zinc-based oxide catalyst. Under these extreme reaction co

3、nditions, the efficiency of methanol synthesis is severely limited by thermodynamics as methanol synthesis is an extremely exothermic reaction.1,2 For example, at 573 K and 50 bar, it is calculated by thermodynamics that

4、 theoretic maximum one-</p><p>  The BNL method first reported by Brookhaven National Laboratory (BNL), using a very strong base catalyst (mixture of NaH, acetate), realized this continuous liquid-phase synt

5、hesis in a semi-batch reactor at 373-403 K and 10-50 bar. However, a remarkable drawback of this process is that even a trace amount of carbon dioxide and water in the feed gas or reaction system will deactivate the stro

6、ngly basic catalyst soon,4,5 resulting in high cost coming from the complete purification of the syngas fr</p><p>  Liquid-phase methanol synthesis from pure CO and H2 via the formation of methyl formate has

7、 been widely studied, where carbonylation of methanol and successive hydrogenation of methyl formate were considered as two main steps of the reaction.6-13</p><p>  Palekar et al. used a potassium methoxide/

8、copper chromite catalyst system to conduct this liquid-phase reaction in a semi-batch reactor at 373-453 K and 30-65 bar.6 Although the mechanism of BNL method is still controversial, a lot of researchers think that it i

9、s similar to the mechanism above.3 However, similar to that in the BNL method, in this process CO2 and H2O act as poisons to the strong base catalyst (RONa, ROK) as well and must be completely removed from syngas, making

10、 commercialization</p><p>  Tsubaki et al. proposed a new method of low-temperature synthesis of methanol from CO2/H2 on a Cu-based oxide catalyst using ethanol as a kind of “catalytic solvent”, by which met

11、hanol was produced in a batch reactor at 443 K and 30 bar.14 This new process consisted of three steps: (1) formic acid synthesis from CO2 and H2; (2) esterification of formic acid by ethanol to ethyl formate; and (3) hy

12、drogenation of ethyl formate to methanol and ethanol. Considering that the water-gas shift reaction a</p><p>  As formic acid was not detected in the products, we suggested the reaction path as step (2). Tsu

13、baki et al. investigated the synthesis reaction of methanol from CO/CO2/H2, using ethanol as reaction medium in a batch reactor and found high selectivity for methanol formation at temperature as low as 423-443 K.26 In t

14、his communication, the catalytic promoting effects of different alcohols on the synthesis of methanol from CO/ CO2/H2 on Cu/ZnO catalyst were investigated. High yields of methanol were</p><p>  Experimental

15、Section</p><p>  The catalyst was prepared by the conventional coprecipitation method. An aqueous solution containing copper, zinc nitrates (Cu/Zn in molar ratio=1), and an aqueous solution of sodium carbona

16、te were added simultaneously with constant stirring to 300 mL of water. The precipitation temperature and pH value were maintained at 338 K and 8.3-8.5, respectively. The resulting precipitate was filtrated and washed wi

17、th distilled water, followed by drying at 383 K for 24 h and calcination at 623 K for 1 h.</p><p>  In the experiments using reactant gas of different composition, a commercially available ICI catalyst (ICI

18、51-2) was also used through the same reduction pretreatment, denoted here as Cu/ZnO (B). The BET surface area for Cu/ZnO (B) was 20.1 m2/g.</p><p>  To confirm the influence of the catalyst passivation, a ta

19、ilor-made reactor where in situ reduction of the catalyst before ethanol introduction was available, was used to perform the catalyst reduction and reaction; but no difference in reaction behavior was observed. So using

20、passivated catalyst reduced separately had no influence.</p><p>  In the reaction, a closed typical batch reactor with inner volume of 80 mL and a stirrer was used. The stirring speed of the propeller-type s

21、tirrer was carefully checked to eliminate the diffusion resistance between gas, liquid, and solid phases. A desired amount of solvent and catalyst was added into the reactor. Then the reactor was closed and the air insid

22、e the reactor was purged by reactant gas. A pressurized mixture gas of CO (31.90%), CO2 (5.08%), and H2 (60.08%) was introduced and then th</p><p>  In the experiments using reactant gas of different composi

23、tion, where Cu/ZnO (B) was employed, a conventional magnetically stirred batch reactor was used. The reaction conditions were: temperature=423 K; initial pressure=30 bar; reaction time =2 h; catalyst 0.2 g; alcohol (etha

24、nol): 5 mL.</p><p>  3. Results and Discussion</p><p>  The analysis results showed that only CO and CO2 existed in the postreaction gas and only methanol and the corresponding HCOOR were the ob

25、tained liquid products. Table 1 listed the results of 13 kinds of alcohols used as reaction solvent separately under the same reaction conditions where Cu/ZnO (A) was employed. For comparison, the results in the cases of

26、 no solvent and cyclohexane were also listed in Table 1. The total conversion was the sum of the yields of both methanol and ester. From the t</p><p>  For the six 1-alcohols from ethanol through 1-hexanol t

27、o benzyl alcohol, the conversions to methanol and the corresponding ester (HCOOR) decreased with increasing carbon number of alcohol molecule. No ester was observed for these first alcohols when their carbon number was m

28、ore than three. This is in accordance with the rate sequence of different 1-alcohols in the esterification reaction,28 providing the evidence that step (2) was rate-determining. As the concentration of ester, HCOOR, was

29、so lo</p><p>  Concerning the alcohols with the same carbon number but different structure, the second alcohol had highest activity, as shown in the reactions in 2-propanol, 2-bu-tanol, and 2-pentanol separa

30、tely. 2-Propanol exhibited highest activity among these three 2-alcohols. For example, at 443 K, the total conversion in the solvent of 2-propanol was high up to 23.46%, among which methanol and 2-propyl formate yields a

31、ccounted for 13.19% and 10.27%, respectively.</p><p>  For alcohols with larger spatial obstacle, the reaction had lower activity, as shown in the cases of iso-butanol, tert-butyl alcohol, and cyclopentanol.

32、 In addition, for ethylene glycol and benzyl alcohol, no activity was observed. But the reason is not very clear now.</p><p>  On the reasons for different behaviors of the alcohols with the same carbon numb

33、er but different structure, it is considered that different alcohol type affected step(2) by both the electronic effect and spatial effect. For 1-butanol, the electron density of oxygen atom in ROH is lower. As a result,

34、 ROH attacked the carbon atom of HCOOCu, the intermediate of step (2), more slowly. But the spatial obstacle of 1-butanol is the smallest among all butanols, and this is favorable to the nucleophilic </p><p>

35、;  It should be pointed out that the accumulated ester (HCOOR) can be easily transferred to methanol and ROH under higher H2 partial pressure. Two experiments were conducted to demonstrate this. One was the hydrogenation

36、 of ethyl formate in a batch reactor and the other was the hydrogenation of 2-butyl formate in a flow-type semi-batch autoclave reactor. For the first one, the reaction conditions were similar to those used in the synthe

37、sis reaction of methanol described above. A mixture gas of H2 a</p><p>  The total conversions were high while 2-alcohols were utilized. But the yields to ester were also high, especially for 2-pentanol. It

38、is referred that step (3) above was slower if 2-alcohols were used. In other cases, the rate of step (3) was much faster than that of step (2), resulting in the disappearance or very low yield of the corresponding esters

39、.</p><p>  If the water was added to ethanol with the same molar amount as that of CO2 in the feed gas under standard conditions, and the same experiment was conducted, similar results were obtained. Water d

40、id not affect the reaction behavior at these reaction conditions. From the reaction mechanism above, water was only an intermediate, similar to the role of CO2 in steps (1)-(3).</p><p>  In Table 2, the infl

41、uence from various reactant gas composition was investigated at 423 K where catalyst Cu/ZnO (B) was used. It is clear that the total reaction rate increased with the increasing of CO2 content in the syngas. The reaction

42、of CO2 +H2 exhibited the highest reaction rate. It seems that methanol synthesis rate was faster from CO2+H2 than from CO+H2, supporting that step (1) in the reaction mechanism was reasonable. It is interesting that pure

43、 CO did not react, indicating carbonylat</p><p>  4. Conclusions</p><p>  The use of alcohol, especially 2-alcohols, as a catalytic solvent in the synthesis of methanol from CO/CO2/H2, not only

44、realized a new low-temperature methanol synthesis method, but also overcame drawbacks of the BNL method and other low-temperature methanol synthesis methods. This effect from accompanying alcoholic solvent decreased grea

45、tly the temperature and pressure of the synthesis reaction on Cu/ZnO solid catalyst, via a new reaction path. This method is very promising to become a new tech</p><p>  In fact, when the amount (weight) of

46、catalyst was increased, the conversion was increased linearly in our experiments. 50-60% conversion was realized in a flow-type semi-batch reactor, as low-temperature methanol synthesis has no thermodynamic limitation. B

47、ut in the high-temperature reaction, even the catalyst weight is enhanced, conversion cannot be increased due to intrinsic thermodynamics limitation.</p><p>  In the future, a bubble-column reactor is consid

48、ered for large-scale synthesis.</p><p>  Acknowledgment </p><p>  Research for Future Program from Japan Society for the Promotion of Science (JSPS) is greatly acknowledged (JSPS-RFTF98P01001).

49、EF0100395</p><p>  References</p><p>  [1]Herman, R. G.; Simmons, G. W.; Klier, K. Stud. Surf. Sci. Catal.1981, 7, 475.</p><p>  [2]Graaf, G. H.; Sijtsema, P.; Stamhuis, E. J.; Oost

50、en, G. Chem.Eng. Sci. 1986, 41, 2883.</p><p>  [3]Marchionna, M.; Lami, M.; Galleti, A. CHEMTECH, 1977, April,27.</p><p>  [4]Haggin, J. Chem. Eng. News 1986, Aug. 4, 21.</p><p>  [

51、5]Brookheaven National Laboratory, U.S. Patents, 4,614,749, 4,-619,946, 4,623,634, 4,613,623 [1986], 4,935,395 [1990].</p><p>  [6]Palekar, V. M.; Jung, H.; Tierney, J. W.; Wender, I. Appl. Catal.1993, 102,

52、13.</p><p>  [7]Kirk-Othmer. Encyclopedia of Chemical Technology, 2nd ed.;Wiley: New York, 1964; Vol. 13, p 390.</p><p>  [8]Palekar, V. M.; Jung, H.; Tierney, J. W.; Wender, I. Appl. Catal.1993

53、, 103, 105.</p><p>  [9]Wender, I. Fuel Process. Technol. 1996, 48, 189.</p><p>  [10]Onsager, O. T. World Patent 86/03190, 1986.[11] Zhang, H.; Li, H.; Lin, G.; Tsai, K. R. Stud. Surf. Sci. Cat

54、al.1996, 101, 1369.</p><p>  [12]Chen, Y. Z.; Chung, B. Z.; Hsieh, C. R. Catal. Lett. 1996, 41,213.</p><p>  [13]Girolamo, M.; Marchionna, M. Ital. Patent MI92/A 002126, 1992</p><p>

55、;  [14]subaki, N.; Sakaiya, Y.; Fujimoto, K. Appl. Catal. 1999, 180,L11.</p><p>  [15]Chen, C. S.; Cheng, W. H.; Lin, S. S. Catal. Lett. 2000, 68, 45.</p><p>  [16]Yoshihara, J.; Campbell, C. T.

56、 J. Catal. 1996, 161, 776.</p><p>  [17]Fujita, S.; Usui, M.; Ito, H.; Takezawa, N. J. Catal. 1995, 157,403.</p><p>  [18]Bailey, S.; Fromont, G. F.; Snoeck, J. W.; Waugh, K. C. Catal.Lett. 1995

57、, 30, 99.</p><p>  [19]Yoshihara, J.; Parker, S.; Schafer, A.; Campbell, C. T. Catal.Lett. 1995, 31, 313.</p><p>  [20]Oki, S.; Happel, J.; Hnatow, M.; Kaneko, Y. Proc. 5th Int. Congr.Catal. 197

58、3, 1, 173.</p><p>  [21]Oki, S.; Mezaki, R. J. Phys. Chem. 1973, 77, 447; 1973, 77, 1601.</p><p>  [22]Mezaki, R.; Oki, S. J. Catal. 1973, 30, 488.</p><p>  [23]Shchibrya, G. G.; Mo

59、rozov, N. M.; Temkin, M. I. Kinet. Katal.1965, 6, 1115.</p><p>  [24]Uchida, H.; Isogai, N.; Oba, M.; Hasegawa, T. Bull. Chem. Soc.Jpn. 1967, 40, 1981.</p><p>  [25]Yureva, T. M.; Boreskov, G. K

60、.; Gruver, V. S. Kinet. Katal. 1969,10, 862.</p><p>  [26]Tsubaki, N.; Ito, M.; Fujimoto, K. J. Catal. 2001, 197, 224.</p><p>  [27]Perry, F.; Chilton, T. Chemical Engineers’ Handbook, 5th ed.;M

61、cGraw-Hill: New York, 1975; pp 3-62.</p><p>  [28]Morrison, R. T.; Boyd, R. N. Organic Chemistry; Allyn andBacon: Boston, MA, 1973; Chapter 20.</p><p>  一種新的低溫甲醇合成路線:</p><p><b&g

62、t;  酒精溶劑的催化效應(yīng)</b></p><p><b>  1      簡介</b></p><p>  世界各地每年氣相甲醇的工業(yè)生產(chǎn)30-40萬噸,由一氧化碳/二氧化碳/氫氣,在523?573 K的溫度范圍和50-100 bar的壓力范 ??圍,采用銅-鋅-氧化物的催化劑。 這

63、些極端的反應(yīng)條件下,由于甲醇合成在熱力學(xué)上是一個放熱反應(yīng),甲醇合成效率受到嚴重限制。[1,2]例如,在573 K和50 bar下,它是由熱力學(xué)計算的理論最大的一通CO轉(zhuǎn)換為流式反應(yīng)器的H2/CO = 2時,20%左右。 據(jù)悉,一通工業(yè)ICI的過程中CO轉(zhuǎn)化率是15至25%之間,即使用于富氫氣(H2/CO = 5,523-573K)。因此,發(fā)展低溫合成甲醇,這將大大降低生產(chǎn)成本,并利用在低溫的熱力學(xué)優(yōu)勢,過程是富有挑戰(zhàn)性的和重要

64、的。[3]如果轉(zhuǎn)換是在甲醇合成足夠高,回收未反應(yīng) 合成氣可以省略,可直接使用空氣中的改革者,而不是純氧。 一般來說,低溫甲醇合成是在液相中進行。</p><p>  BNL的方法,首次報道布魯克海文國家實驗室(BNL的),使用一個非常強大的堿催化劑(氫化鈉,醋酸混合物),實現(xiàn)了連續(xù)在一個半批式反應(yīng)器液相合成在373-403 K和10-50 bar。 然而,這個過程中的一個顯著的缺點是

65、,即使是二氧化碳和水的進氣或反應(yīng)體系中的微量盡快將停用強堿性催化劑[4,5]導(dǎo)致成本高,從完整的合成氣凈化來自改革者,激活失活的催化劑。 停止這種低溫甲醇合成方法的商品化,這是最主要的原因。</p><p>  已通過從單純的一氧化碳和氫氣的甲醇液相合成甲酸甲酯形成廣泛的研究,羰基甲醇和甲酸甲酯連續(xù)加氫反應(yīng)的兩個主要步驟。6-13</p><p>  Palekar等人用鉀甲醇/

66、銅鉻催化劑系統(tǒng)進行半批式反應(yīng)器液相反應(yīng)在373-453 K和30-65 bar.[6]雖然仍有爭議的機制,BNL的方法是,很多研究人員認為,它是類似機制above.3然而,在BNL的方法類似,在此過程中CO2和H2O毒藥強堿催化劑(RONA,韓國)以及行為,必須完全從合成氣中刪除,使商品化低溫甲醇合成的困難。</p><p>  椿等人建議使用乙醇作為“催化溶劑”,其中甲醇在443 K和30欄在批式反應(yīng)器生產(chǎn)上的

67、銅基氧化物催化劑的新方法從二氧化碳加氫合成甲醇低溫14。這個新的過程包括三個步驟:(1)甲酸CO2和H2合成;(2)乙醇甲酸乙酯甲酸酯化;(3)甲酸乙酯,甲醇和乙醇的加氫。 考慮到水氣轉(zhuǎn)移反應(yīng)在較低溫度下很容易對Cu / ZnO催化劑。[15-25] CO/H2含CO2的甲醇合成新路線CON-管道,作為合成甲醇更實際的方式,提出了。它包括以下基本步驟:</p><p>  由于甲酸產(chǎn)品檢測,我

68、們建議的步驟(2)反應(yīng)路徑。 椿等人。 CO/CO2/H2甲醇合成反應(yīng)研究,使用乙醇作為反應(yīng)介質(zhì)在批式反應(yīng)器,發(fā)現(xiàn)甲醇在溫度低423-443?形成高選擇性。在此通信26,不同的催化促進作用Cu / ZnO催化劑上CO /二氧化碳加氫合成甲醇的醇進行了調(diào)查。 甲醇產(chǎn)量高,實現(xiàn)了同時利用一些醇類。</p><p>  2     

69、0;  試驗段</p><p>  由傳統(tǒng)的共沉淀法,制備的催化劑。 同時加入300毫升的水不斷攪拌的水溶液,含有銅,鋅硝酸鹽(銅/鋅的摩爾比= 1),碳酸鈉水溶液。沉淀溫度和pH值均保持在338 K和8.3-8.5。 產(chǎn)生沉淀,過濾,干燥24小時,在383 K焙燒1 h后在623 K表,用蒸餾水洗凈。 這易制毒化學(xué)減少了5%的氮氫氣在473 K的流量為13小時,

70、并先后2%的氧氣,氬氣稀釋鈍化。 為催化劑的BET比表面積為59.4平方米/克。 這里的催化劑記為銅/鋅(一)。</p><p>  在使用不同的成分,市售的催化劑卜內(nèi)門(ICI的51-2),還可以通過使用同一減少預(yù)處理反應(yīng)氣體的實驗,在這里表示,銅/鋅(乙)。(二)對Cu / ZnO的BET比表面積為20.1平方米/克。</p><p>  以確認催化劑鈍化的影響,在

71、原位的催化劑乙醇引進前減少提供量身定制的反應(yīng)堆,用于執(zhí)行了催化劑的還原和反應(yīng),但沒有反應(yīng)行為的差異進行了觀察。 所以使用鈍化催化劑減少單獨沒有影響。</p><p>  在反應(yīng)中,一個封閉的內(nèi)部體積80毫升和攪拌器典型的批式反應(yīng)器。 螺旋槳式 ??攪拌器的攪拌速度進行了仔細的檢查,以消除氣,液,固相之間的擴散阻力。 反應(yīng)堆所需的溶劑和催化劑的加入量。 然后反應(yīng)堆被關(guān)閉,反應(yīng)

72、氣體反應(yīng)器內(nèi)的空氣被清除。 介紹了加壓混合氣體的CO(31.90%),二氧化碳(5.08%),H2(60.08%)和反應(yīng)所需溫度。 2.94%的氬氣在進氣被用來作為內(nèi)部標準。 反應(yīng)后,反應(yīng)堆冷卻冰水,然后在反應(yīng)器內(nèi)的氣體被釋放非常緩慢,收集在氣包進行分析。 標準的反應(yīng)條件如下:催化劑= 1.0克;溶劑= 20毫升,反應(yīng)溫度= 443 K,初始壓力為30 bar。 在443 K標準反應(yīng)溫度

73、,壓力計算是55桿,包括乙醇約10酒吧的蒸汽壓力。27的所有產(chǎn)品被證實的GC-MS(島津GCMS 1600)和兩個氣相色譜儀分析(島津GC-8A / FID的液體產(chǎn)品,和GL科學(xué)GC-320/TCD氣體產(chǎn)品)。 所有原料氣中的碳的基礎(chǔ)上改建或產(chǎn)量計算。</p><p>  在實驗中使用不同的組成,其中銅/鋅(二)被聘用的反應(yīng)氣體,磁攪拌的傳統(tǒng)批式反應(yīng)器。 反應(yīng)條件為:溫度= 423 K,初始壓

74、力= 30欄;反應(yīng)時間為2小時;催化劑0.2克酒精(乙醇):5毫升。</p><p><b>  3結(jié)果與討論</b></p><p>  分析結(jié)果表明,只有一氧化碳和二氧化碳存在的postreaction氣體,只有甲醇和相應(yīng)的HCOOR獲得的液體產(chǎn)品。 表1列出了13種醇作為反應(yīng)溶劑其中銅/鋅(一)采用相同的反應(yīng)條件下單獨使用的結(jié)果。 相比之下,

75、在沒有案件的結(jié)果 溶劑,環(huán)己烷也被列于表1。 總轉(zhuǎn)換為甲醇酯產(chǎn)量的總和。 從表中,沒有任何活動出現(xiàn)環(huán)己烷使用時,或無溶劑使用。 然而,在大多數(shù)的反應(yīng),使用酒精時,高活性的觀察,表明在低溫酒精的催化促進作用。 這些醇類反應(yīng)溫度顯著降低,加速了反應(yīng),但不影響整體反應(yīng)步驟(1)化學(xué)計量學(xué)- (3)上面列出的。</p><p>  甲醇和相應(yīng)的酯(HCOOR)轉(zhuǎn)換為乙醇從

76、6 1 1 -己醇苯甲醇醇通過,減少與酒精分子的碳原子數(shù)的增加。 沒有觀察到這些時,其碳數(shù)超過3醇酯。 這是根據(jù)不同的1醇的酯化反應(yīng),28提供的證據(jù)表明,速率決定步驟(2)率序列。 由于酯,HCOOR,濃度是如此之低,步驟(3)被認為是比步驟(2)快。 應(yīng)當(dāng)指出的是,所有醇類,他們有一個大的進氣中總碳摩爾比盧武鉉的區(qū)別來自不同的酒精溶劑的摩爾數(shù)的影響可以忽略不計。</p><p

77、>  關(guān)于碳數(shù)相同,但不同結(jié)構(gòu)的醇,第二酒精活性最高,在2 -丙醇,2 - BU-tanol,2 -戊醇分別反應(yīng)所示。 在這三個2醇,2 -丙醇具有活性最高。 例如,在443 K時,在2 -丙醇溶劑的總轉(zhuǎn)換是高達23.46%,其中甲醇和2 -丙基甲酸產(chǎn)量分別占13.19%和10.27%。</p><p>  醇具有較大的空間障礙,反應(yīng)活性較低,ISO的情況下所示-丁醇,叔丁醇,環(huán)戊。&#

78、160;此外,乙二醇和苯甲醇的,沒有活動進行了觀察。 但原因還不是很清楚。</p><p>  在不同碳數(shù)相同,但不同結(jié)構(gòu)的醇行為的原因,它被認為是不同的酒精類步驟(2)電子效應(yīng)和空間效應(yīng)的影響。 1 -丁醇,在ROH的氧原子的電子密度較低。 作為一個結(jié)果,ROH的攻擊的HCOOCu的碳原子,中間步驟(2),速度比較慢。 但是,1 -丁醇的空間障礙是所有丁醇中最小的,這是有

79、利于酯化反應(yīng)的親核攻擊。 另一方面,異丁醇在其氧原子的電子密度高,這應(yīng)該加速反應(yīng)。 但其龐大的分子體積成為一個嚴重的親核攻擊的空間障礙。 因此,其酯化率是很低的。 由于電子因素和空間因素之間的平衡作用,2 -丁醇4丁醇中展出的活性最高,在速率決定步驟(2)。 叔丁醇作為相反的例子,這里為5.83%低了甲醇的產(chǎn)量。</p><p>  應(yīng)當(dāng)指出,累計酯(HCOOR)

80、可以很容易地轉(zhuǎn)移,以甲醇和盧武鉉在較高的H2分壓。 進行了兩個實驗來證明這一點。 一個是甲酸乙酯加氫在批式反應(yīng)器,另一個是在流式半批次的蒸壓釜,二丁基甲酸加氫。 為第一個反應(yīng)條件類似以上所述的甲醇合成反應(yīng)。 共30桿(20桿氫氣和10酒吧氮氣)的初始壓力與H2和N2的混合氣體作為原料氣。 甲酸乙酯(1.5毫升)和18.5 mL環(huán)己烷中進行混合,倒入反應(yīng)器,而不是酒精20毫升。 

81、反應(yīng)2h后,甲酸乙酯的總轉(zhuǎn)化率為98.20%,甲醇產(chǎn)量為83.69%。 甲酸甲酯和CO的副產(chǎn)品。 甲酸甲酯可能來自甲酸乙酯的酯交換反應(yīng)生產(chǎn)甲醇。 二氧化碳可能來自甲酸乙酯分解。 對于后者的實驗中,7.5毫升的二丁基甲酸(5倍,在第一個實驗中使用的甲酸乙酯的體積量)和12.5 mL環(huán)己烷中倒在反應(yīng)堆。 流動氣體被用來作為一個純H2(20毫升/分鐘,30桿)的流動。 在443 K的

82、連續(xù)反應(yīng)8 h后,二丁基甲酸96.23%被轉(zhuǎn)移到甲醇和2 -丁醇。</p><p>  總轉(zhuǎn)化率較高,而利用2醇。 但酯的產(chǎn)量也高,尤其是2 -戊醇。 它被稱為上述步驟(3)如果是慢2醇。 在其他情況下,步驟(3)率遠遠高于步驟(2)更快,導(dǎo)致在失蹤或相應(yīng)的酯的產(chǎn)量非常低。</p><p>  如果水被添加到乙醇的進氣中的CO 2,在標準條件下,具有相同的摩爾

83、量,并進行相同的實驗,獲得了類似的結(jié)果。 水沒有影響,在這些反應(yīng)條件下的反應(yīng)行為。 從上面的反應(yīng)機制,水是唯一的中間,類似作用的CO 2中的步驟(1) - (3)。</p><p>  表2中,從各種反應(yīng)氣體成分的影響進行了調(diào)查,在423 K催化劑,銅/鋅(二)使用。 它是明確的,總反應(yīng)率與合成氣中的二氧化碳含量的增加提高。 CO2 + H2的反應(yīng)表現(xiàn)出最高的反應(yīng)速率。&#

84、160;看來,甲醇合成論文率為更快比從CO + H2,CO2 + H2,支持這一步反應(yīng)機制(1)是合理的。 有趣的是,純CO沒有反應(yīng),表明羰基醇酯不可能。 而使用純CO + H2的反應(yīng)氣體,甲酸乙酯形成,但沒有得到甲醇。 比含二氧化碳,合成氣反應(yīng)發(fā)生率相當(dāng)?shù)汀?#160;這是很難確定,現(xiàn)在純CO + H2的反應(yīng)路線,CO插入乙醇形成的酯被排除。 也許水乙醇中(約100-150 PPM)與二氧化碳反

85、應(yīng)形成二氧化碳和實現(xiàn)步驟(1)及(2)。</p><p><b>  4。 結(jié)論</b></p><p>  使用酒精,尤其是2 -醇,作為一個在甲醇合成催化劑的溶劑從CO/CO2/H2,不僅實現(xiàn)了一個新的低溫甲醇合成的方法,而且還克服了BNL的方法的缺點和其他低低溫甲醇合成方法。 這從伴隨酒精溶劑的影響大大降低銅/鋅固體催化劑合成反應(yīng)溫度和壓力,

86、通過一個新的反應(yīng)路徑。這種方法是非常有希望成為一個低溫甲醇合成的新技術(shù),合成氣凈化是沒有必要的。 由于采用傳統(tǒng)的固體催化劑,非常溫和的反應(yīng)條件,合成氣含有CO2和H2O反應(yīng),它可能是一種很有前途的低溫甲醇合成的實用方法。</p><p>  事實上,當(dāng)催化劑用量(重量)增加,轉(zhuǎn)換線性增加在我們的實驗。 50-60%的轉(zhuǎn)換,實現(xiàn)了在一個流動型半批式反應(yīng)器,低溫甲醇合成沒有熱力學(xué)的限制。 

87、;但在高溫反應(yīng),甚至是催化劑重量增強,轉(zhuǎn)換不能增加內(nèi)在熱力學(xué)限制。</p><p>  在未來,氣泡塔反應(yīng)器大型綜合考慮。</p><p><b>  聲明</b></p><p>  從日本社會的未來計劃,為促進科學(xué)的研究(JSP)的大大承認(薪級RFTF98P01001)。 EF0100395</p><p&g

88、t;<b>  參考文獻</b></p><p>  [1]Herman, R. G.; Simmons, G. W.; Klier, K. Stud. Surf. Sci. Catal.1981, 7, 475.</p><p>  [2]Graaf, G. H.; Sijtsema, P.; Stamhuis, E. J.; Oosten, G. Chem.Eng

89、. Sci. 1986, 41, 2883.</p><p>  [3]Marchionna, M.; Lami, M.; Galleti, A. CHEMTECH, 1977, April,27.</p><p>  [4]Haggin, J. Chem. Eng. News 1986, Aug. 4, 21.</p><p>  [5]Brookheaven N

90、ational Laboratory, U.S. Patents, 4,614,749, 4,-619,946, 4,623,634, 4,613,623 [1986], 4,935,395 [1990].</p><p>  [6]Palekar, V. M.; Jung, H.; Tierney, J. W.; Wender, I. Appl. Catal.1993, 102, 13.</p>

91、<p>  [7]Kirk-Othmer. Encyclopedia of Chemical Technology, 2nd ed.;Wiley: New York, 1964; Vol. 13, p 390.</p><p>  [8]Palekar, V. M.; Jung, H.; Tierney, J. W.; Wender, I. Appl. Catal.1993, 103, 105.<

92、/p><p>  [9]Wender, I. Fuel Process. Technol. 1996, 48, 189.</p><p>  [10]Onsager, O. T. World Patent 86/03190, 1986.[11] Zhang, H.; Li, H.; Lin, G.; Tsai, K. R. Stud. Surf. Sci. Catal.1996, 101, 1

93、369.</p><p>  [12]Chen, Y. Z.; Chung, B. Z.; Hsieh, C. R. Catal. Lett. 1996, 41,213.</p><p>  [13]Girolamo, M.; Marchionna, M. Ital. Patent MI92/A 002126, 1992</p><p>  [14]subaki,

94、N.; Sakaiya, Y.; Fujimoto, K. Appl. Catal. 1999, 180,L11.</p><p>  [15]Chen, C. S.; Cheng, W. H.; Lin, S. S. Catal. Lett. 2000, 68, 45.</p><p>  [16]Yoshihara, J.; Campbell, C. T. J. Catal. 1996

95、, 161, 776.</p><p>  [17]Fujita, S.; Usui, M.; Ito, H.; Takezawa, N. J. Catal. 1995, 157,403.</p><p>  [18]Bailey, S.; Fromont, G. F.; Snoeck, J. W.; Waugh, K. C. Catal.Lett. 1995, 30, 99.</p

96、><p>  [19]Yoshihara, J.; Parker, S.; Schafer, A.; Campbell, C. T. Catal.Lett. 1995, 31, 313.</p><p>  [20]Oki, S.; Happel, J.; Hnatow, M.; Kaneko, Y. Proc. 5th Int. Congr.Catal. 1973, 1, 173.</

97、p><p>  [21]Oki, S.; Mezaki, R. J. Phys. Chem. 1973, 77, 447; 1973, 77, 1601.</p><p>  [22]Mezaki, R.; Oki, S. J. Catal. 1973, 30, 488.</p><p>  [23]Shchibrya, G. G.; Morozov, N. M.; T

98、emkin, M. I. Kinet. Katal.1965, 6, 1115.</p><p>  [24]Uchida, H.; Isogai, N.; Oba, M.; Hasegawa, T. Bull. Chem. Soc.Jpn. 1967, 40, 1981.</p><p>  [25]Yureva, T. M.; Boreskov, G. K.; Gruver, V. S

99、. Kinet. Katal. 1969,10, 862.</p><p>  [26]Tsubaki, N.; Ito, M.; Fujimoto, K. J. Catal. 2001, 197, 224.</p><p>  [27]Perry, F.; Chilton, T. Chemical Engineers’ Handbook, 5th ed.;McGraw-Hill: New

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論