版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 外文科技資料翻譯</b></p><p><b> 英文原文</b></p><p> Research on a face recognition system by the genetic algorithm</p><p> Computer vision and recognit
2、ion is playing an increasingly important role in modern intelligent control.Object detection is the first and most important step in object recognition. Traditionally,a special object can be recognized by the template ma
3、tching method,but the recognition speed has always been a problem.In this article,an improved general genetic algorithm-based face recognition system is proposed.The genetic algorithm(GA)has been considered to be a robus
4、t and global searching method.He</p><p> 1 Introduction</p><p> If we search on the web or in a conference proceedings about intelligent control,lots of papers and applications are presented.A
5、mong them,image processing and recognition occupy a very large percentage.The higher the degree of intelligence,the more important the image detection and recognition technology.</p><p> For controlling an
6、intelligent system(autonomous mobile vehicle,robot,etc.),the most important element is the control strategy,but before automatically making it move,image recognition is needed.For an intelligent control system,it is nece
7、ssary to acquire information about the external world automatically by sensors,in order to recognize its position and the surrounding situation.A camera is one of the most important sensors for computer vision.That is to
8、 say,the system endeavors to find out wha</p><p> The reliability and time-response of object detection and recognition have a major influence on the performance and usability of the whole object recognitio
9、n system.1The templatematching method is a practicable and reasonablemethod for object detection.2This article gives an improvement in the general template matching method.</p><p> In addition,in order to s
10、earch for the object of interest in an image,lots of data need to be processed.The geneticalgorithm(GA)has been considered to be a robust and global searching method(although it is sometimes said thatGA can not be used f
11、or finding the global optimization3). Here,the chromosomes generated by GA contain information about the image data,and the genetic and evolution operations are used to obtain the best match to the template:searching for
12、 the best match is the goal of this</p><p> In this article,Sect.2 gives the encoding method of the GA and the experimental setting that is used.In Sect.3,the experiment and the analysis are addressed.Some
13、conclusions are given in Sect.4.</p><p> Theory and experimental setting</p><p> For an image recognition system,the most interesting part that has special features has first to be detected in
14、 the original image.This is called object detection.After that,this part will be compared to a template to see if it is similar or not.This is called object recognition.For example, if we want to find a special person in
15、 an image,we first have to detect people in the image,and then recognize which one is the person of interest(sometimes these two steps will be executed simultaneously).T</p><p> Fig.1. Object recognition sy
16、stem</p><p> Statistical object recognition involves locating and isolating the targets in an image,and then identifying them by statistical decision theory.One of the oldest techniques of pattern recogniti
17、on is matching filtering,4which allows the computation of a measure of the similarity between the original image f(x,y)and a template h(x,y).Define the mean-squared distance</p><p><b> (1)</b>&l
18、t;/p><p> ,if the image and template are normalized by</p><p><b> (2)</b></p><p><b> And then</b></p><p><b> =</b></p><p
19、> = (3)</p><p> For the right-hand side of Eq.3,the first term is constant,and thus can measure as the least-squared similarity between the original image an
20、d the template.5 If has alarge value (which means that is small enough),then the image is judged to match the template.If is less than apreselected threshold,the recognition process will either reject the match or cre
21、ate a new pattern,which means that the similarity between the object in the original image and the template is not satisfied.</p><p> 2.1 Genetic encoding</p><p> As introduced above,the chrom
22、osomes generated by the GA contain information about the image data,so the first step is to encode the image data into a binary string.6The parameters of the center of a face(x,y)in the original image,the rate of scale t
23、o satisfy eq.2,and the rotating</p><p> angle θ are encoded into the elements of a gene.Some important parameters of the GA used here are given in Table 1,and the search field and region are given in Table2
24、.As shown in Table 2,one chromosome contains 4 bytes:the coordinate(x,y)in the original image,the rate of scale,</p><p> and the rotation angle θ.</p><p> 2.2 Experimental setting</p>&
25、lt;p> The experiment is done by first loading the original and the template images.The GA is used to find whether or not there is the object of a template in the original image.If the answer is YES,then in the origin
26、al image the result gives the coordinates of the center of the object,the scale,and the rotation angle from the template.For comparison,the general template matching method is also presented.7The execution time shows the
27、 effectiveness of the GA-</p><p> based recognition method. Figures 2 and 3 are the original images and the templates for the experiment.The values are the width×height in pixels of the image.In Fig.2,
28、three images are presented,the content and size of which are different.Figure 2a has two faces(the faces of a person and a toy),Fig.2b shows a face tipped to one side,and the person in Fig.2c wears a hat</p><p
29、> and the background is more complicated than in Figs.2a and b.</p><p> The two templates in Fig.3 are not extracted from the same image.For normal use,the template should be extracted as the average of
30、 several feature images.In Fig.4,the template(a)-0 is generated from(a)-1,(a)-2,and(a)-3,and takes the average value of the gray levels from the three models.The same is also true for(b)-0.</p><p> Fig.2.Th
31、ree original images(max_x×max_y).a 238×170.b 185×196.c 275×225</p><p> Fig.3.Templates for matching(temp_x×temp_y).a Template 1.b Template 2</p><p> 3 Experiment and c
32、omparison</p><p> The genetic operations and GA parameters are presented in Table 1 and Table 2.The fitness is defined as</p><p><b> (4)</b></p><p> In Eq.4, is the g
33、ray level of the coordinatesin the template image,the width and height of which are and .gives the gray level in the original image,the coordinates of which are calculated by translation from,and by changing the scale a
34、nd the rotation angleθfrom the template.Since the images are 256 gray-level images,in Eq.4,division by 255 ensures that the resulting fitness is between 0 and 1.The maximum number of generations is limited to 300,and the
35、 threshold of the matching rate is set to 0</p><p> The results of GA-based face recognition are given in Fig.6 and Table 3.Figure 6a,c and d are searched to match the template Fig.3a,while Fig.6b is matche
36、d to Fig.3b. Figure 6a and b reach the matching rate 0.9 within 300 generations,while Fig.6c and d cannot reach the matching rate 0.9 within 300 generations(the best match is given in Table 3).In the images in Fig.6a–c,w
37、e see that the result given matches the template well.The coordinates ,the rate of scale,and the angle of rotationθhave been f</p><p> Fig.4.Creation of template</p><p> For the purpose of com
38、paring the effects of the GA-based algorithm,the result of the general matching method7 is also presented.From Fig.5,we see that although both the original image(the top-left image)and the template(the top-right image)ar
39、e simplified by binarization,the matching time is 1 min 22 s.The recognizable result is the bottomleft image in Fig.5.</p><p> Fig.5.Result of searching by a GA</p><p> 4 Conclusions</p>
40、<p> In this article,the GA-based image recognition method is tested,and a comparison with the general matching method is presented.</p><p> As we know,the GA starts with an initial set of random so
41、lutions called the population.Each individual in the population is called a chromosome,and represents a solution to the problem.By stochastic search techniques based on the mechanism of natural selection and natural gene
42、tics, genetic operations(crossover and mutation)and evolutionary operations(selecting or rejecting) are used to search for the best solution.8</p><p> In this article,the chromosomes generated by the GA con
43、tain information about the image, and we use the genetic operators to obtain the best match between the original image and the template.The parameters are the coordinates(x,y)of the center of the object in the original i
44、mage, the rate of scale,and the angle of rotationθ.</p><p> In fact,translation,scale,and rotation are the three main invariant moments in the field of pattern recognition.9However,for face recognition,the
45、facial features are difficult to extract,and are calculated by the general pattern recognition theory and method.10 Even these three main invariant moments will not be invariant because the facial expression is changed i
46、n different images.</p><p> Thus,recognition only gives the best matching result within an upper predetermined threshold. Both the GA-based method and the general template matching method are presented here
47、,and the comparison with the traditionalpattern matching method shows that the recognition is satisfactory,although under some conditions the result is not very good(Fig.6d).</p><p> Based on the results of
48、 the experiments described here,future work will emphasize(i) optimizing the fields of chromosomes,and(ii)improving the fitness function by adding some terms to it.This work is important and necessary in order to improve
49、 the GA-based face recognition system.</p><p> References</p><p> 1.Sugisaka M,Fan X(2002)Development of a face recognition system for the life robot.Proceedings of the 7th International Sympo
50、sium on Artificial Life and Robotics,Oita,Japan,vol 2,Shubundo Insatsu Co.Ltd.,pp 538–541</p><p> 2.Castleman K(1998)Digital image processing.Original edition published by Prentice Hall;a Simon&Schuster
51、 Press of Tsinghua University,China</p><p> 3.Iba H(1994)Foundation of genetic algorithm:solution of mystic GA(in Japanese).Omu Press</p><p> 4.Deguchi K,Takahashi I(1999)Image-based simultane
52、ous control of robot and target object motion by direct-image interpretation.Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robot and Systems,Kyongju,Korea,vol 1,pp 375–380</p><p>
53、 5.Jaehne B(1995)Digital image processing:concepts,algorithms,and scientific applications,3rd edn.Springer Berlin,Heidelberg,Germany</p><p> 6.Agui T,Nagao T(2000)Introduction to image processing using prog
54、ramming language C(in Japanese).Shoko-do Press</p><p> 7.Ishibashi’s studying room of C++(in Japanese).http://homepage3.nifty.com/ishidate/vcpp.htm</p><p> 8.Gen M,Cheng R(1997)Genetic algorit
55、hms and engineering design.Wiley-Interscience,New York</p><p> 9.Agui T,Nagao T(1992)Image processing and recognition(in Japanese).Syokoudou Press</p><p> 10.Takimoto H,Mitsukura T,Fukumi M,et
56、 al.(2002)A design of a face detection system based on the feature extraction method.Proceedings of the 12th Symposium on Fuzzy,Artificial Intelligence,Neural Networks and Computational Intelligence,Saga,Japan,pp 409–410
57、</p><p><b> 中文譯文</b></p><p> 對(duì)于臉部識(shí)別系統(tǒng)研究遺傳算法</p><p> 基于計(jì)算機(jī)視覺的手勢(shì)識(shí)別對(duì)于當(dāng)今智能控制起著非常重要的作用。通常,模板圖像匹配法能夠識(shí)別一個(gè)特殊物體,但是識(shí)別的速度總是個(gè)問題。這篇文章是討論一個(gè)改進(jìn)的人臉識(shí)別遺傳算法系統(tǒng)。遺傳算法已經(jīng)被認(rèn)為是一個(gè)穩(wěn)健的全局搜索的方法。在這,G
58、A產(chǎn)生的染色體含有識(shí)別這個(gè)物體的信息。這篇文章提出了一個(gè)人臉識(shí)別的有效方法。最后,列舉了各種實(shí)驗(yàn)結(jié)論,和傳統(tǒng)的模板圖像匹配法對(duì)比,還有一些其他考慮因素。</p><p><b> 引言</b></p><p> 如果我們搜索關(guān)于智能控制的網(wǎng)站或者回憶進(jìn)程,我們就能找到很多文章或者應(yīng)用文。這些文章大部分是關(guān)于圖像處理和圖像識(shí)別。智能度越高,圖像處理和識(shí)別的技術(shù)越高。
59、對(duì)于控制和智能系統(tǒng)來說(自動(dòng)移動(dòng)工具,機(jī)器人等),最重要的因素是控制策略,但是在是它們自動(dòng)運(yùn)作之前,圖像識(shí)別也是必要的。對(duì)于智能控制系統(tǒng)來說,通過感應(yīng)器自動(dòng)獲得外部世界的信息比如識(shí)別它的位置和周圍的環(huán)境也是很有必要的,照相機(jī)是計(jì)算機(jī)視覺的一個(gè)重要感應(yīng)器。也就是說,這個(gè)系統(tǒng)能夠確認(rèn)照相機(jī)(或者機(jī)器人)攝入的圖像:交通信號(hào),障礙物,還有指南等</p><p> 這個(gè)物體是別的可靠性和感應(yīng)速度對(duì)于其運(yùn)作和左右有著非常
60、重要的作用。模板圖像匹配法是一種更有效且合理的物體識(shí)別方法。這篇文章主要是詳述普通模板圖像匹配法。除此之外,需要很多數(shù)據(jù)才能搜索到圖像上的土體。基因遺傳算法被認(rèn)為是一種穩(wěn)健的全球搜索方法(盡管有時(shí)基因遺傳算法不能用于全球優(yōu)化。這里,遺傳基因算法所得的染色體含有各種信息關(guān)于圖像和數(shù)據(jù),以及基因和演化操作能夠傳統(tǒng)模幫助獲取板圖像匹配:尋找最好的匹配數(shù)據(jù)是這篇文章的目標(biāo)。這個(gè)想法來源于GA的特征,以及通過智能系統(tǒng)快速簡(jiǎn)單地識(shí)別人臉的需要。這里
61、不僅僅是介紹這個(gè)圖像處理和GA的概念,因?yàn)?,這個(gè)話題已經(jīng)有更詳細(xì)的文章論述了。</p><p> 在這篇文章,第二部分介紹GA的解碼方法還有所需的實(shí)驗(yàn)設(shè)備。第三部分主要是陳述實(shí)驗(yàn)和分析。第四部分主要是一些結(jié)論。</p><p><b> 理論和實(shí)驗(yàn)設(shè)備</b></p><p> 對(duì)于影響識(shí)別系統(tǒng)來說,最有趣的部分是在原始圖像中已經(jīng)首先發(fā)現(xiàn)
62、了特殊的特征。這就被稱為物體識(shí)別。其次,這一部分會(huì)和模板圖像對(duì)比以確認(rèn)他們相似否。這就被稱為目標(biāo)檢測(cè)。例如,如果我們想在一張圖像中找到一個(gè)人特殊特征,我們首先應(yīng)該要在這幅圖像中找到這個(gè)人,然后識(shí)別出哪個(gè)是這個(gè)人的特征(有時(shí)候這個(gè)兩個(gè)步驟會(huì)有序進(jìn)行)這一個(gè)步驟在圖一有所展示。</p><p><b> 圖1物體識(shí)別系統(tǒng)</b></p><p> 統(tǒng)計(jì)識(shí)別函數(shù)包括定位
63、和分離圖像中的兩個(gè)目標(biāo),然后通過統(tǒng)計(jì)確認(rèn)理論識(shí)別他們。這個(gè)最老的系統(tǒng)識(shí)別技術(shù)是匹配分離,計(jì)算方法可以獲得原始圖像(x,y)和模板h(x.y),的相似之處。最后定義均方距離。</p><p><b> (1)</b></p><p> ,對(duì)圖像和模板進(jìn)行歸一化</p><p><b> (2)</b></p>
64、;<p><b> 然后得到</b></p><p><b> =</b></p><p> = (3)</p><p> 為了公式(3)右邊,在第一個(gè)周期內(nèi)是恒定的,因此可以作為衡量與原始圖像和模板最小平方的相
65、似性。[5] 如果有一個(gè)較大的值(即足夠?。?,則判定該圖像匹配模板。如果比預(yù)選門檻低,識(shí)別過程要么拒絕匹配要么創(chuàng)建一個(gè)新的模式,這意味著在原來的圖像相似性的對(duì)象和模板不滿意。2.1基因破解</p><p> 綜上所述,GA的染色體含有圖像數(shù)據(jù)的信息,所以第一步是將圖像數(shù)據(jù)分解為二進(jìn)制串位。在原圖像中臉中心的周長(zhǎng),滿足公式2的比例還有旋轉(zhuǎn)角被分解為一個(gè)基因的多個(gè)因素。這里GA一些重要的周長(zhǎng)以表1的形式展示出來了
66、。圖表2是搜索范圍和地區(qū)。正如圖表2所展示的,一個(gè)染色體含有四個(gè)字節(jié):坐標(biāo),原圖像還有比例,以及旋轉(zhuǎn)角。</p><p><b> 2.2實(shí)驗(yàn)設(shè)置</b></p><p> 這個(gè)實(shí)驗(yàn)是由第一加載原和模板圖像應(yīng)用遺傳算法找到了是否存在的目的是一個(gè)模板,在原圖像的。如果答案是肯定的,那么在原始圖像結(jié)果給出坐標(biāo)中心的對(duì)象、規(guī)模、旋轉(zhuǎn)角度從模板與之相比,一般的模板匹配法提
67、出了執(zhí)行時(shí)間顯示?;谶z傳算法的有效性的識(shí)別方法。</p><p> 如圖2和3是原始圖像和模板進(jìn)行實(shí)驗(yàn),這個(gè)值×寬的圖像像素高度…在圖2、3圖像和內(nèi)容,提出了具有不同大小圖2有兩副面孔的人的臉,一個(gè)玩具),圖2中的b顯示一臉向一邊,并將在圖2中的c的人戴著一頂帽子更復(fù)雜的背景下,在圖2中的(a)和(b)。</p><p> 這兩個(gè)樣板圖不是提取相同的圖像正常使用模板應(yīng)提取的
68、幾個(gè)特征的平均圖像圖、模板(a)-0是來自(a)-1,(a)-2、(a)-3,并以平均價(jià)值的灰度層次的三種模式的. 同樣的情況也英尺(b)-0。</p><p> 圖2 三張?jiān)瓉韴D像(max_x×max_y) 238×170.b 185×196.c 275×225</p><p> 圖3 模板匹配(temp_x×temp_y模板1.
69、b模板)</p><p> 三,比較試驗(yàn)遺傳操作,給出了算法參數(shù)表1和表2。 健康的定義是</p><p><b> (4)</b></p><p> 在公式4, 在模板圖像中,是的水平坐標(biāo)系數(shù),坐標(biāo)系的寬度分別為和高度。提供了原始圖像灰度層次、坐標(biāo)的計(jì)算,并通過轉(zhuǎn)化可以通過改變規(guī)模和旋轉(zhuǎn)角度,在公式(4)中,除以255確保所產(chǎn)生的結(jié)果
70、是在0和1之間,最多的后代限于300的門檻。匹配率確切地說,如果在3代匹配率可達(dá)0.9,那么說明模板中發(fā)現(xiàn)了原始圖像(模板匹配的原始圖像閾值)。否則,結(jié)果要訓(xùn)練達(dá)到300代。</p><p> 圖6和表3 給出了基于遺傳算法的人臉識(shí)別結(jié)果。圖6( a)、(c)、(d)搜索匹配的模板匹配,而圖6(b )匹配圖3(b)。圖6(a)和(b)匹配率達(dá)到300世代之內(nèi),而圖6中c和d不能達(dá)到300代以內(nèi),在圖像中最佳匹配
71、率0.9的 (表3)是我們看到了圖6a-c。結(jié)果給出了模板匹配坐標(biāo)、規(guī)?;⑿D(zhuǎn)匹配圖6(d)正確,但結(jié)果并不十分滿意的。 其原因是這個(gè)模板圖3(a)不能代表在任何時(shí)候都有用,也就是說,盡管人在不同的圖像被認(rèn)出來是相同的,但是這個(gè)模板在不同的外觀等所有條件不能給出這個(gè)人的特點(diǎn)。另一個(gè)原因是,該算法本身也存在著一些問題。例如,用了一種基于遺傳算法的識(shí)別方法,設(shè)置搜索的字段(本文中,被選中),應(yīng)該確定的遺傳操作,同時(shí)選擇和優(yōu)化適應(yīng)度的函數(shù)。
72、</p><p><b> 圖4 創(chuàng)建模板</b></p><p> 為了比較的基于遺傳算法的算法的影響,一般匹配方法[7]結(jié)果的目的。從圖5,我們看到,雖然無論是原圖像(左上圖)和模板(右上方圖片)是由二值化簡(jiǎn)化,匹配時(shí)間為1分22 s。辨認(rèn)的結(jié)果是在圖5 底部左邊的形象。</p><p> 圖5由遺傳的搜索結(jié)果</p>
73、<p><b> 結(jié) 論</b></p><p> 本文中研究了基于遺傳算法的圖像識(shí)別方法,并且給出了和一般圖像匹配算法的比較結(jié)果。</p><p> 我們都知道遺傳算法開始于一組初始的隨機(jī)解集,稱之為種群。種群中的每一個(gè)個(gè)體叫做染色體,其代表了問題的一個(gè)解。通過模仿自然選擇和遺傳機(jī)制進(jìn)行隨機(jī)搜索,使用基因操作(交叉和變異)和演化操作(選擇或者遺棄)
74、來搜索最優(yōu)解。</p><p> 本文中,遺傳算法產(chǎn)生的染色體包含了圖像信息,我們可以通過遺傳算子得到原始圖像和模板之間的最優(yōu)匹配。參數(shù)包括原始圖像中物體的中心點(diǎn)坐標(biāo)(x,y),尺度變換率以及旋轉(zhuǎn)角度θ。</p><p> 事實(shí)上,平移、尺度變化和旋轉(zhuǎn)是模式識(shí)別中的三個(gè)主要不變矩。然而,對(duì)于臉部識(shí)別來時(shí),使用一般的模式識(shí)別的理論和方法進(jìn)行臉部特征的提取和計(jì)算比較困難。甚至由于在不同的圖
75、像中臉部特征的表達(dá)是會(huì)改變的,這三個(gè)主要的不變矩將不再是不變的。</p><p> 所以,識(shí)別僅僅是在一個(gè)預(yù)先確定的上限閾值內(nèi)給出了最優(yōu)匹配。本文同時(shí)給出了基于遺傳算法的方法和一般的模板匹配方法,和傳統(tǒng)的模式識(shí)別方法的比較表明這種識(shí)別方法盡管在某些情況下其結(jié)果并不是很理想(圖6d),但是其結(jié)果總體上還是比較令人滿意的。</p><p> 基于以上實(shí)驗(yàn)的結(jié)果,我們未來的工作主要集中在以下
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人臉識(shí)別系統(tǒng)研究.pdf
- 人臉識(shí)別及其遺傳算法實(shí)現(xiàn).pdf
- 基于PCA算法的人臉識(shí)別系統(tǒng)研究.pdf
- 基于遺傳算法的人臉識(shí)別系統(tǒng)的設(shè)計(jì)與DSP實(shí)現(xiàn).pdf
- 利用遺傳算法實(shí)現(xiàn)人臉識(shí)別.pdf
- 基于遺傳算法的內(nèi)燃機(jī)軸系參數(shù)識(shí)別系統(tǒng)研究.pdf
- 人臉識(shí)別系統(tǒng)
- 人臉識(shí)別系統(tǒng)
- 基于pca的人臉識(shí)別系統(tǒng)研究
- 基于多尺度ε-LBP算法的人臉識(shí)別系統(tǒng)研究.pdf
- 基于SIFT算法的ATM視頻人臉識(shí)別系統(tǒng)研究.pdf
- 基于2DDPCA算法的人臉識(shí)別系統(tǒng)研究.pdf
- 人臉特征提取與人臉識(shí)別系統(tǒng)研究.pdf
- 基于OpenCV的人臉識(shí)別系統(tǒng)研究.pdf
- 基于ZYNQ的人臉識(shí)別系統(tǒng)研究.pdf
- 遺傳算法在人臉識(shí)別方面的應(yīng)用.pdf
- 遺傳算法在人臉識(shí)別中的應(yīng)用.pdf
- 人臉識(shí)別系統(tǒng)及關(guān)鍵算法研究.pdf
- 三維人臉識(shí)別系統(tǒng)研究.pdf
- 基于遺傳算法的復(fù)雜背景下人面識(shí)別系統(tǒng).pdf
評(píng)論
0/150
提交評(píng)論