版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> A Broadband Amplifier with Huge Gain-bandwidth Product and Low Power Consumption </p><p><b> Gain</b></p><p> The gain of an amplifier is the ratio of output to input po
2、wer or amplitude, and is usually measured in decibels. (When measured in decibels it is logarithmically related to the power ratio: G(dB)=10 log(Pout /(Pin)). RF amplifiers are often specified in terms of the maximum pow
3、er gain obtainable, while the voltage gain of audio amplifiers and instrumentation amplifiers will be more often specified (since the amplifier's input impedance will often be much higher than the source impedance, a
4、nd th</p><p> Example: an audio amplifier with a gain given as 20 dB will have a voltage gain of ten (but a power gain of 100 would only occur in the unlikely event the input and output impedances were
5、 identical). </p><p><b> Bandwidth</b></p><p> The bandwidth of an amplifier is the range of frequencies for which the amplifier gives "satisfactory performance". The def
6、inition of "satisfactory performance" may be different for different applications. However, a common and well-accepted metric is the half power points (i.e. frequency where the power goes down by half its peak
7、value) on the output vs. frequency curve. Therefore bandwidth can be defined as the difference between the lower and upper half power points. This is therefore also kn</p><p> The gain of a good quality ful
8、l-range audio amplifier will be essentially flat between 20 Hz to about 20 kHz (the range of normal human hearing). In ultra high fidelity amplifier design, the amp's frequency response should extend consid
9、erably beyond this (one or more octaves either side) and might have ?3 dB points < 10 and > 65 kHz. Professional touring amplifiers often have input and/or output filtering to sharply limit frequency response
10、beyond 20 Hz-20 kHz; too much of the amplifier's potent</p><p> Efficiency</p><p> Efficiency is a measure of how much of the power source is usefully applied to the amplifier
11、9;s output. Class A amplifiers are very inefficient, in the range of 10–20% with a max efficiency of 25% for direct coupling of the output. Inductive coupling of the output can raise their efficiency to a maximum of 50%.
12、</p><p> Class B amplifiers have a very high efficiency but are impractical for audio work because of high levels of distortion (See: Crossover distortion). In practical design, the result of a tradeoff is
13、the class AB design. Modern Class AB amplifiers are commonly between 35–55% efficient with a theoretical maximum of 78.5%.</p><p> Commercially available Class D switching amplifiers have reported efficienc
14、ies as high as 90%. Amplifiers of Class C-F are usually known to be very high efficiency amplifiers.</p><p> More efficient amplifiers run cooler, and often do not need any cooling fans even in multi-kilowa
15、tt designs. The reason for this is that the loss of efficiency produces heat as a by-product of the energy lost during the conversion of power. In more efficient amplifiers there is less loss of energy so in turn less he
16、at.</p><p> In RF Power Amplifiers, such as cellular base stations and broadcast transmitters, specialist design techniques are used to improve efficiency. Doherty designs, which use a second transistor, ca
17、n lift efficiency from the typical 15% up to 30-35% in a narrow bandwidth. Envelope Tracking designs are able to achieve efficiencies of up to 60%, by modulating the supply voltage to the amplifier in line with the envel
18、ope of the signal.</p><p><b> Linearity</b></p><p> An ideal amplifier would be a totally linear device, but real amplifiers are only linear within limits.</p><p> Wh
19、en the signal drive to the amplifier is increased, the output also increases until a point is reached where some part of the amplifier becomes saturated and cannot produce any more output; this is called clipping, and re
20、sults in distortion.</p><p> In most amplifiers a reduction in gain takes place before hard clipping occurs; the result is a compression effect, which (if the amplifier is an audio amplifier) sounds much le
21、ss unpleasant to the ear. For these amplifiers, the 1 dB compression point is defined as the input power (or output power) where the gain is 1 dB less than the small signal gain. Sometimes this nonlinearity is deliberate
22、ly designed in to reduce the audible unpleasantness of hard clipping under overload.</p><p> The problem of nonlinearity is most often solved with negative feedback.</p><p> Linearization is a
23、n emergent field, and there are many techniques, such as feedforward, predistortion, postdistortion, EER, LINC, CALLUM, cartesian feedback, etc., in order to avoid the undesired effects of the non-linearities.</p>
24、<p><b> Noise</b></p><p> This is a measure of how much noise is introduced in the amplification process. Noise is an undesirable but inevitable product of the electronic devices and comp
25、onents, also much noise results from intentional economies of manufacture and design time. The metric for noise performance of a circuit is noise figure or noise factor. Noise figure is a comparison between the output si
26、gnal to noise ratio and the thermal noise of the input signal.</p><p> Output dynamic range</p><p> Output dynamic range is the range, usually given in dB, between the smallest and largest use
27、ful output levels. The lowest useful level is limited by output noise, while the largest is limited most often by distortion. The ratio of these two is quoted as the amplifier dynamic range. More precisely, if S = maxima
28、l allowed signal power and N = noise power, the dynamic range DR is DR = (S + N ) /N.[1]</p><p> In many switched mode amplifiers, dynamic range is limited by the minimum output step size.</p><p&
29、gt;<b> Slew rate</b></p><p> Slew rate is the maximum rate of change of the output, usually quoted in volts per second (or microsecond). Many amplifiers are ultimately slew rate limited (typica
30、lly by the impedance of a drive current having to overcome capacitive effects at some point in the circuit), which sometimes limits the full power bandwidth to frequencies well below the amplifier's small-signal freq
31、uency response.</p><p><b> Rise time</b></p><p> The rise time, tr, of an amplifier is the time taken for the output to change from 10% to 90% of its final level when driven by a s
32、tep input. For a Gaussian response system (or a simple RC roll off), the rise time is approximated by:</p><p> tr * BW = 0.35, where tr is rise time in seconds and BW is bandwidth in Hz.</p><p>
33、; Settling time and ringing</p><p> The time taken for the output to settle to within a certain percentage of the final value (for instance 0.1%) is called the settling time, and is usually specified for o
34、scilloscope vertical amplifiers and high accuracy measurement systems. Ringing refers to an output variation that cycles above and below an amplifier's final value and leads to a delay in reaching a stable output. Ri
35、nging is the result of overshoot caused by an underdamped circuit.</p><p><b> Overshoot</b></p><p> In response to a step input, the overshoot is the amount the output exceeds its
36、final, steady-state value.</p><p><b> Stability</b></p><p> Stability is an issue in all amplifiers with feedback, whether that feedback is added intentionally or results unintenti
37、onally. It is especially an issue when applied over multiple amplifying stages.</p><p> Stability is a major concern in RF and microwave amplifiers. The degree of an amplifier's stability can be quantif
38、ied by a so-called stability factor. There are several different stability factors, such as the Stern stability factor and the Linvil stability factor, which specify a condition that must be met for the absolute stabilit
39、y of an amplifier in terms of its two-port parameters.</p><p> Electronic amplifiers</p><p> Main article: Electronic amplifier</p><p> There are many types of electronic amplifi
40、ers, commonly used in radio and television transmitters and receivers, high-fidelity ("hi-fi") stereo equipment, microcomputers and other electronic digital equipment, and guitar and other instrument amplifiers
41、. Critical components include active devices, such as vacuum tubes or transistors. A brief introduction to the many types of electronic amplifier follows.</p><p> Power amplifier</p><p> The t
42、erm "power amplifier" is a relative term with respect to the amount of power delivered to the load and/or sourced by the supply circuit. In general a power amplifier is designated as the last amplifier in a tra
43、nsmission chain (the output stage) and is the amplifier stage that typically requires most attention to power efficiency. Efficiency considerations lead to various classes of power amplifier: see power amplifier classes.
44、</p><p> Vacuum tube (valve) amplifiers</p><p> Main article: Valve amplifier</p><p> The glow from four "Electro Harmonix KT88" brand power tubes lights up the inside
45、of a Traynor YBA-200 guitar amplifier</p><p> According to Symons, while semiconductor amplifiers have largely displaced valve amplifiers for low power applications, valve amplifiers are much more cost effe
46、ctive in high power applications such as "radar, countermeasures equipment, or communications equipment" (p. 56). Many microwave amplifiers are specially designed valves, such as the klystron, gyrotron, tr
47、aveling wave tube, and crossed-field amplifier, and these microwave valves provide much greater single-device power output at microwave</p><p> Valves/tube amplifiers also have niche uses in other areas, su
48、ch as</p><p> in russian military aircraft, for their EMP tolerance </p><p> niche audio for their sound qualities </p><p> Transistor amplifiers</p><p> Main artic
49、les: Transistor, Bipolar junction transistor, Audio amplifier, and MOSFET</p><p> The essential role of this active element is to magnify an input signal to yield a significantly larger output signal. The a
50、mount of magnification (the "forward gain") is determined by the external circuit design as well as the active device.</p><p> Many common active devices in transistor amplifiers are bipolar junct
51、ion transistors (BJTs) and metal oxide semiconductor field-effect transistors (MOSFETs).</p><p> Applications are numerous, some common examples are audio amplifiers in a home stereo or PA system, RF high p
52、ower generation for semiconductor equipment, to RF and Microwave applications such as radio transmitters.</p><p> Transistor-based amplifier can be realized using various configurations: for example with a
53、bipolar junction transistor we can realize common base, common collector or common emitter amplifier; using a MOSFET we can realize common gate, common source or common drain amplifier. Each configuration has different c
54、haracteristic (gain, impedance...).</p><p> Operational amplifiers (op-amps)</p><p> Main articles: Operational amplifier and Instrumentation amplifier</p><p> An operational amp
55、lifier is an amplifier circuit with very high open loop gain and differential inputs which employs external feedback for control of its transfer function or gain. Although the term is today commonly applied to integrated
56、 circuits, the original operational amplifier design was implemented with valves.</p><p> Fully differential amplifiers (FDA)</p><p> Main article: Fully differential amplifier</p><
57、p> A fully differential amplifier is a solid state integrated circuit amplifier which employs external feedback for control of its transfer function or gain. It is similar to the operational amplifier but it also has
58、 differential output pins.</p><p> Video amplifiers</p><p> These deal with video signals and have varying bandwidths depending on whether the video signal is for SDTV, EDTV, HDTV 720p or 1080
59、i/p etc.. The specification of the bandwidth itself depends on what kind of filter is used and which point (-1 dB or -3 dB for example) the bandwidth is measured. Certain requirements for step response and overshoot are
60、necessary in order for acceptable TV images to be presented.</p><p> Oscilloscope vertical amplifiers</p><p> These are used to deal with video signals to drive an oscilloscope display tube an
61、d can have bandwidths of about 500 MHz. The specifications on step response, rise time, overshoot and aberrations can make the design of these amplifiers extremely difficult. One of the pioneers in high bandwidth ve
62、rtical amplifiers was the Tektronix company.</p><p> Distributed amplifiers</p><p> Main article: Distributed Amplifier</p><p> These use transmission lines to temporally split t
63、he signal and amplify each portion separately in order to achieve higher bandwidth than can be obtained from a single amplifying device. The outputs of each stage are combined in the output transmission line. This type o
64、f amplifier was commonly used on oscilloscopes as the final vertical amplifier. The transmission lines were often housed inside the display tube glass envelope.</p><p> Switched mode amplifiers</p>&
65、lt;p> These nonlinear amplifiers have much higher efficiencies than linear amps, and are used where the power saving justifies the extra complexity.</p><p> Negative resistance devices</p><p&
66、gt; Negative resistances can be used as amplifiers, such as the tunnel diode amplifier.</p><p> Microwave amplifiers</p><p> Travelling wave tube (TWT) amplifiers</p><p> Main a
67、rticle: Traveling wave tube</p><p> Used for high power amplification at low microwave frequencies. They typically can amplify across a broad spectrum of frequencies; however, they are usually not as tunabl
68、e as klystrons.</p><p><b> Klystrons</b></p><p> Main article: Klystron</p><p> Very similar to TWT amplifiers, but more powerful and with a specific frequency "
69、sweet spot". They generally are also much heavier than TWT amplifiers, and are therefore ill-suited for light-weight mobile applications. Klystrons are tunable, offering selective output within their specified frequ
70、ency range.</p><p> Musical instrument (audio) amplifiers</p><p> Main articles: Instrument amplifier and Audio amplifier</p><p> An audio amplifier is usually used to amplify si
71、gnals such as music or speech</p><p> Background: Without a distributed amplifier, most broadband amplifier bandwidths can be achieved around 1/10 to 1/3 of their fT only. Therefore, a high bandwidth amplif
72、ier requires high fT (at least 3-10 times of the amplifier bandwidth) transistors in order to achieve high bandwidth. Unfortunately, the current device technology is limited and in very high fT transistors, yield is stil
73、l low. This leads to high cost and low yield.</p><p> Even if high gain-bandwidth product could be achieved by a distributed amplifier, the major disadvantages of the distributed amplifier are large area, a
74、nd high dc power consumption. </p><p> Transistors were operated with high current density for high fT in order to achieve high bandwidth amplification. However, the transistors would become highly stressed
75、 resulting in reliability problems and short lifetimes. 50 ohm terminations are currently employed at the input and output of broadband amplifiers in order to obtain desirable input and output broadband impedance matches
76、 (low S11 and S22). However, the disadvantage is 3-dB losses at theirs inputs and outputs. Technology: University</p><p> With the invented broadband amplifier, transistors are operated with typical current
77、 density, but high amplifier bandwidth can still be achieved. Therefore, the transistors are not stressed at high current density, thus leading to better reliability and long lifecycles. Also, 50 termination is not requi
78、red in the input and output broadband matching network, therefore, a 3-dB loss is avoidable. S11 can be kept low over the operating bandwidth even with DC supply varied from 0 to 3.3V, and S22 is </p><p> T
79、he quality of an amplifier can be characterized by a number of specifications, listed below.</p><p> 低功耗高增益寬帶放大器</p><p><b> 中文翻譯</b></p><p><b> 增益</b><
80、/p><p> 放大器的增益是輸出或輸入功率之比,通常以分貝衡量。(當(dāng)它是對數(shù)分貝測量相關(guān)的功率比:G(dB)=10 log(Pout /(Pin))。射頻放大器往往在最大功率增益所取,而音頻放大器的電壓增益和儀表放大器將更加經(jīng)常指定(因為放大器的輸入阻抗,往往會比源阻抗較高,負(fù)載阻抗高于放大器的輸出阻抗)。</p><p> 例如:20分貝將有10倍的電壓增益(100倍功率增益,只會發(fā)生
81、在的輸入和輸出阻抗是一樣的情況)</p><p><b> 帶寬</b></p><p> 放大器的帶寬是表示放大器提供了“良好”的頻率范圍,可為不同的應(yīng)用。然而,共同的和普遍接受的衡量標(biāo)準(zhǔn)是半功率點(即在斷電的頻率降低一半的峰值)在輸出與頻率的曲線。因此,帶寬可以被定義為下限和上限之間的半功率點的差異。因此,這是也是眾所周知的-3 dB帶寬。帶寬(或稱為“頻率響
82、應(yīng)”公差為其他反應(yīng)),有時引用(-1分貝,-6分貝等),或“加或減為1dB”(大致音量差異的人通??梢詸z測到)。 </p><p> 一個良好的質(zhì)量贏得全音域音頻放大器將基本持平,20赫茲至20千赫(正常人類的聽覺范圍)。超高保真放大器設(shè)計,放大器的頻率響應(yīng)應(yīng)該大大超過這個擴展(一個或多個八度任何一方),并有可能-3 dB點<10和“> 65千赫。專業(yè)旅游放大器往往輸入和/或輸出濾波大力限制頻率超過
83、20赫茲,20赫茲的反應(yīng);太多的放大器的潛在輸出功率很大,否則是對聲波和超聲波頻率浪費,以及調(diào)幅無線電干擾的危險會增加?,F(xiàn)代開關(guān)放大器必須在陡峭的低通濾波的輸出獲得的高開關(guān)頻率的噪聲和諧波消除。</p><p><b> 效率 </b></p><p> 效率是如何的權(quán)力來源是非常有用的應(yīng)用到放大器的輸出措施。 A類放大器是非常低效的10-20%之間,與25的輸出
84、直接耦合%最大效率。電感耦合的輸出可以提高效率50%為上限。 </p><p> B類放大器具有很高的效率,而且是因為高層次的失真(見:交叉失真音頻工作不切實際)。在實際設(shè)計中,一個折衷的結(jié)果是AB類設(shè)計。 AB類放大器是現(xiàn)代之間通常35-55%,其中78.5%的理論最大效率。 </p><p> 市售D類開關(guān)放大器有報道高達(dá)90%的效率。 CF卡類放大器通常被稱為是非常高效率的放大器
85、。 </p><p> 更高效的放大器運行冷卻器,而且往往并不需要,即使在多千瓦的冷卻風(fēng)扇的設(shè)計。此是,由于生產(chǎn)效率損失按損失的能源產(chǎn)品的過程中能量轉(zhuǎn)換熱能的原因。在更有效的放大器有較少的能量損失,從而使更少的熱量。 </p><p> 在射頻功率放大器,如蜂窩基站和廣播發(fā)射機,專門設(shè)計技術(shù)被用來提高效率。多爾蒂設(shè)計,其中使用第二個晶體管,可以擺脫典型的效率高達(dá)15%,在一個狹窄的30
86、-35%的帶寬。信封跟蹤設(shè)計能夠?qū)崿F(xiàn)高達(dá)60%的效率,通過調(diào)節(jié)與信號的包絡(luò)的電源電壓在線路放大器。 </p><p><b> 線性 </b></p><p> 一個理想的放大器將是一個完全線性器件,但真正的放大器只在一定限度內(nèi)的線性關(guān)系。 </p><p> 當(dāng)信號驅(qū)動放大器的增加,產(chǎn)量也增加,直到達(dá)到一個點,有部分放大器的部分變得飽和
87、,不能產(chǎn)生任何更多的產(chǎn)出,這就是所謂的剪報,以及扭曲的結(jié)果。 </p><p> 在大多數(shù)放大器在增益減少發(fā)生之前,很難發(fā)生削波,結(jié)果是一個壓縮效應(yīng),(如果放大器是音頻放大器)聽起來更刺耳的聲音。對于這些放大器,1分貝壓縮點的定義是:輸入功率(或輸出功率)當(dāng)增益為1分貝的小信號增益比少。有時候這是故意設(shè)計的非線性減少超載下的硬剪輯發(fā)聲不愉快。 </p><p> 對非線性問題是最經(jīng)常與
88、負(fù)反饋解決。 </p><p> 線性化是一個新興的領(lǐng)域,有許多技術(shù),如前饋,預(yù)失真,postdistortion,能效比,LINC技術(shù),卡勒姆,笛卡爾反饋等,以避免非線形性的不良影響。 </p><p><b> 噪音 </b></p><p> 這是一個多大的噪音是在放大過程中引入的措施。噪聲是一種電子裝置和組件,同時從生產(chǎn)和設(shè)計時的
89、噪音故意經(jīng)濟的必然產(chǎn)物,但結(jié)果不理想。對于噪聲的電路的性能指標(biāo)是噪聲的數(shù)字或噪音的因素。噪聲系數(shù)是一個與輸出信噪比與輸入信號的熱噪聲的比較。 </p><p><b> 輸出動態(tài)范圍 </b></p><p> 輸出動態(tài)范圍的范圍,通常以dB給出了最小和最大之間的有用的輸出水平。有用的最低水平是有限的輸出噪聲,而最大的是最經(jīng)常受到扭曲。這兩個比例是引述放大器的動態(tài)
90、范圍。更確切地說,如果S =最大允許信號功率和N =噪聲功率,動態(tài)范圍DR是何=(s的A + N)的/注[1] </p><p> 在許多開關(guān)式放大器,動態(tài)范圍是有限的最小輸出的步長。 </p><p><b> 壓擺率 </b></p><p> 壓擺率是最高的輸出變化率,通常在每秒(或微秒伏特引用)。許多放大器最終擺率限制(通常由一個
91、驅(qū)動電流不得不克服一些電路中的電容效應(yīng)點),有時遠(yuǎn)遠(yuǎn)低于限制放大器的小信號頻率響應(yīng)的全功率帶寬頻率阻抗。 </p><p><b> 上升時間 </b></p><p> 上升時間,章一個放大器,是為輸出所需的時間從10%調(diào)整到90級時的最后一個步驟輸入驅(qū)動%。對于高斯響應(yīng)系統(tǒng)(或一個簡單的RC滾關(guān)閉),上升時間是近似的: 章*體重= 0.35,其中TR是在幾秒
92、鐘內(nèi)上升時間和體重是赫茲的帶寬。 </p><p><b> 建立時間和振鈴 </b></p><p> 為輸出解決在最終價值的一定百分比,例如0.1%(所需的時間)被稱為沉淀時間,通常是示波器垂直放大器和高精度測量系統(tǒng)中指定。振鈴是指輸出的變化,上述周期和低于1放大器的最終價值,導(dǎo)致在實現(xiàn)穩(wěn)定的輸出延遲。鈴聲響過沖的結(jié)果是由一個欠阻尼電路引起的。 </p&
93、gt;<p><b> 過沖 </b></p><p> 在回答一個步驟的投入,超調(diào)量的輸出量超過其最終的穩(wěn)態(tài)值。 </p><p><b> 穩(wěn)定性 </b></p><p> 穩(wěn)定是符合所有反饋放大器的問題,無論是反饋結(jié)果無意或有意添加。尤其是當(dāng)它是一個放大階段在多個應(yīng)用的問題。 </p&g
94、t;<p> 穩(wěn)定是在射頻和微波放大器的主要問題。一個放大器的穩(wěn)定程度,可量化的一個所謂的穩(wěn)定因素。有幾種不同的穩(wěn)定因素,如斯特恩穩(wěn)定的因素和Linvil穩(wěn)定因素,其中一個必須指定為放大器的絕對穩(wěn)定性會見了它的兩個端口參數(shù)方面的條件。 </p><p><b> 電子放大器 </b></p><p> 主條目:電子放大器 </p>&
95、lt;p> 常見的有廣播和電視發(fā)射機和接收機使用的高逼真度(“高保真音響”)立體聲設(shè)備,微型計算機及其他電子數(shù)碼設(shè)備,吉他和其他樂器放大器電子放大器,許多類型。關(guān)鍵組件包括例如真空管或晶體管有源器件。簡要介紹了電子放大器的多種類型如下。 </p><p><b> 功率放大器 </b></p><p> 術(shù)語“功率放大器”是一個關(guān)于交付給負(fù)載和發(fā)電量的相對
96、長期/或由電源電路來源。一般來說功率放大器被指定為一個傳播鏈(最后放大器的輸出級),是放大器階段,通常需要最關(guān)注的電源效率。效率的考慮導(dǎo)致各類功率放大器:見功率放大器類。 </p><p> 真空管(閥門)放大器 </p><p><b> 主條目:閥放大器 </b></p><p> 從四個“Harmonix的KT88電”的品牌力量管亮
97、起了一特雷諾為YBa - 200吉他放大器內(nèi)發(fā)光 </p><p> 據(jù)西蒙斯,而半導(dǎo)體放大器已在很大程度上取代了低功耗應(yīng)用閥放大器,閥放大器得多的成本,如“雷達(dá)對抗裝備,通信設(shè)備”(第56頁)高功率應(yīng)用有效。許多微波放大器是專門設(shè)計的閥門,如速調(diào)管,回旋管,行波管,交叉場放大器,這些微波閥門提供更大的單器件在比固態(tài)裝置(第59頁的輸出功率微波頻率) [2]。 </p><p> 閥門
98、/管放大器也有其他方面利基用途,例如 </p><p> 俄羅斯軍用飛機,為他們的電磁脈沖容忍 </p><p> 利基音頻他們的聲音質(zhì)量 </p><p><b> 晶體管放大器 </b></p><p> 主條目:晶體管,雙極型晶體管,音頻放大器和MOSFET </p><p> 這
99、一積極因素的基本作用是放大輸入信號,以產(chǎn)生輸出信號大得多。量的放大(以下簡稱“遠(yuǎn)期收益”)是由外部電路設(shè)計以及有源器件。 </p><p> 許多常見的晶體管放大器有源器件的雙極結(jié)晶體管(BJT)和金屬氧化物半導(dǎo)體場效應(yīng)晶體管(MOSFET)。 </p><p> 應(yīng)用多不勝數(shù),一些常見的例子是音頻放大器在家庭立體聲或擴音系統(tǒng),射頻半導(dǎo)體設(shè)備的高發(fā)電,射頻和微波無線電發(fā)射器等應(yīng)用程序。
100、 </p><p> 晶體管的放大器可以實現(xiàn)使用不同的配置:例如一個雙極結(jié)晶體管可以實現(xiàn)我們共同的基礎(chǔ),共集電極或共發(fā)射極放大器,我們可以使用一個MOSFET實現(xiàn)共同的門,常見的來源或共同漏放大器。每個配置有不同的特性(增益,阻抗...)</p><p> (運算放大器運算放大器) </p><p> 主要文章:運算放大器和儀表放大器 </p>
101、<p> 運算放大器是一種具有很高的開環(huán)增益和差分輸入的員工為它的傳遞函數(shù)或外部反饋放大器增益控制電路。雖然長期是今天普遍應(yīng)用到集成電路,原來的運算放大器設(shè)計與閥門執(zhí)行。 </p><p> 全差分放大器(FDA)的 </p><p> 主要文章:全差分放大器 </p><p> 全差分放大器是一種固態(tài)集成電路放大器,采用了與它的傳遞函數(shù)或增益控制
102、的外部反饋。它類似于運算放大器,但它也有差分輸出引腳。 </p><p><b> 視頻放大器 </b></p><p> 這些處理視頻信號,并根據(jù)不同的帶寬是否為標(biāo)清視頻信號,EDTV,HDTV的720p或1080i / p等的。該規(guī)范本身的帶寬取決于什么樣的過濾器使用,哪些點(-1分貝或-3分貝例如)的帶寬是衡量。步反應(yīng)和過沖的某些要求是必要的,以便接受電視圖
103、像顯示方式。 </p><p><b> 示波器垂直放大器 </b></p><p> 這些是用來處理視頻信號驅(qū)動一個示波器顯示管,可以有大約500兆赫帶寬。對階躍響應(yīng),上升時間,過沖和畸變的規(guī)格可以使這些放大器的設(shè)計非常困難。在高帶寬的垂直放大器的先驅(qū)之一,是泰克公司。 </p><p><b> 分布式放大器 </b&
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高增益寬帶放大器的研究與設(shè)計畢業(yè)論文
- 畢業(yè)設(shè)計(論文)高增益寬帶放大器的研究與設(shè)計
- 微波固態(tài)寬帶放大器.pdf
- 一種高增益寬帶視頻放大器設(shè)計.pdf
- 高增益、寬帶的集成光波導(dǎo)放大器的研究.pdf
- 程控寬帶放大器的設(shè)計論文
- 寬帶放大器畢業(yè)設(shè)計論文
- 射頻寬帶放大器畢業(yè)設(shè)計
- CMOS寬帶高增益輸出平衡低噪聲放大器的設(shè)計.pdf
- 微波單片寬帶放大器設(shè)計研究.pdf
- CMOS高增益寬帶寬運算跨導(dǎo)放大器的研究與設(shè)計.pdf
- WLAN高增益可調(diào)中繼放大器的設(shè)計.pdf
- 基于達(dá)林頓結(jié)構(gòu)的寬帶放大器的設(shè)計.pdf
- 一種高增益寬帶CMOS全差分運算放大器.pdf
- CMOS寬帶放大器設(shè)計技術(shù)研究.pdf
- 微波寬帶放大器組件設(shè)計與實現(xiàn).pdf
- 畢業(yè)論文---寬帶放大器的簡便設(shè)計法
- 低噪聲高增益CMOS運算放大器設(shè)計.pdf
- 激光小信號寬帶放大器設(shè)計與實現(xiàn).pdf
- 22-29GHz超寬帶放大器設(shè)計.pdf
評論
0/150
提交評論