版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 英文原文</b></p><p> 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) </p><p> An Approach of Color Feature Evaluation in C
2、olor</p><p> Recognition</p><p> Qi Xiaoxuan, Ji Jianwei</p><p> School of Information & Electric Engineerin</p><p> Shenyang Agriculture University</p>
3、<p> Shenyang, China</p><p> Abstract—This paper analyzes the characteristics of five commonly used color spaces and explores their influences on color recognition respectively. Divisibility evaluati
4、on based on distance criterion is utilized to evaluate the different colorfeatures in each color space and experimental results show that HSI color space has the best divisibility performance. Keywords-color space;colo
5、rrecognition; feature evalutation; divisibility critiron </p><p> I. I NTRODUCTION </p><p> Color is the most intuitive vision feature to describe colorful images. It has been widely use
6、d in pattern recognition for the reason that color feature is almost free from the effects of scale, rotation and translation for the input images [1]. Colors in colorful images can be defined by different color space mo
7、dels, such as RGB space, CMY space, I1I2I3space, YUV space and HSI space. Among the above color spaces, RGB is the basic and the most common one and can readily be mapped into othe</p><p> color perc
8、eption and is too easily influenced by light. The three color components of RGB space are correlated with each other [2]. CMY space represents colors by the complementary component of RGB components.
9、 YUV space, frequently used in color TV systems, uses three channels as Y, U and V to define the pixel. Y are the brightness information, U and V are the color difference which denotes the overall color diff
10、erence instead of the difference between the th</p><p> of color, which enables them more suitable for occasions where light intensity changes, than RGB space.Color recognition technique has been applied
11、to many fields and has gone ahead rapidly. For instance, color recognition in product surface, license plates identification, face recognition and skin recognition [3-6]. Color recognition effects differ w
12、ith the change of color space. This paper investigates on color feature divisibility in the commonly used color spaces as RGB</p><p> above color spaces based on the distance criterion. It provides a
13、 theory basis for color recognition. </p><p> II. COLOR SPACE AND I TS T RANSFORMATION </p><p> It is essential to build up and select a suitable color space for obtaining a kind of valid
14、 color features to characterize colorful images. Different color spaces are utilized for different research purposes. Color space means to define color by an </p><p> array in three-dimension space. In the
15、processing of colorful images, color space is also named as color model or color coordinates. One color space can be converted to another by certain transforms. Below is the introduction of some color spaces
16、 and their conversions [7]. </p><p> A. RGB Color Space </p><p> Red (R), green (G), blue (B) are three primary colors ofspectrum. All colors can be generated by the sum of the threeprimar
17、y colors. In digital images, values of R, G and B rangefrom 0 to 255. A cube in three-dimension coordinate space can be used to describe the RGB color space, where red, green andblue are the three axes, shown in Fig. <
18、;/p><p> 1.The main drawback of RGB color space as follows: </p><p> ? It is not intuitive. It is difficult to see from the RGBvalues the cognitive attributes that the color repres
19、entsitself. </p><p> ? It is non-uniform. The perception difference betweentwo colors in RGB space is different from the distancebetween the two colors. </p><p> ? It is dependent on hardw
20、are devices. </p><p> In a word, RGB space is device-related and an incompleteintuitive color description. To overcome these problems, othercolor spaces,which are more in line with characteristics of c
21、olor vision, are adopted. RGB space can be mapped to other color spaces readily. </p><p> B. CMY(CMYK) Color Space </p><p> CMY space is a spatial structure of a rectangular Cartesian. Its
22、three primary components are cyan (C), magenta (M) and yellow (Y). Colors are obtained by subtractive colors. CMY space is widely used in non-emission display as inkjet printers. Equal amount of the three components can
23、generate the black color. But the aforementioned black color is not pure. Generally speaking, to generate true black color, the fourth component, i.e. black, is added in. This is the CMYK color space. CMY sp</
24、p><p> The transformations from RGB space to CMY space are as follows: </p><p> C. YUV and YCrCb Color Space </p><p> YUV space and YCbCr space both generate a luminance componen
25、t and two </p><p> chrominance components. In YUV space, Y is the luminance component, U and </p><p> V color difference. Y component is independent of the other two. Moreover, the YUV space c
26、an reduce the storage capacity required by digitalcolorful images by the characteristic of human vision. In YCbCr space, Y is the luminance component, Cb is the blue color component and Cr the red color compon
27、ent. Its advantages are obvious that color components are separated from luminance components and linear transformation can be performed from RGB space. Transformation from</p><p> D. H
28、SI Color Space </p><p> HSI space is established from the human psychologicalperception point of view. H (hue) is a color in a color corresponding to the main wavelength in chromatography. S
29、(saturation) is equivalent to the purity of color. I (intensity ) is the brightness of color and the uniform amount of feeling. HSV (hue, saturation, value) and HSB (hue, saturation, brightness) are other color spaces si
30、milar to HSI color space , and are all belong to polar coordinate space structure. Their common mer</p><p> HSI color space provides a suitable space with three components that is better used to
31、descript color in line with human hobbits. However, the defect of non-linear in color difference still exists, especially the color and angle in the H component [9]. </p><p> E. I1I2I3 Color Space &l
32、t;/p><p> Linear transformation from RGB space to I1I2I3space can be explained by the following equations to get three orthogonal color features:</p><p> From formula (7), it can be seen that val
33、ues of I1, I2and I3 component can be positive and negative. The non-correlation property of I1I2I3 space is the best in image recognition. </p><p> III. FEATURE EVALUATION OF COLOR SPACE </p
34、><p> By color spaces, the abstract, subjective visual perception can be translated into a concrete specific position, vector in three-dimensional space, which makes it possible to visualize color fea
35、tures of colorful images and devices. Color space is an important tool of color recognition. Various mixing system has its corresponding color space, and different color spaces have different properties with th
36、eir respective advantages and disadvantages. Validity of color space is the k</p><p> ? Calculate the mean vector and covariance of the ith class samples, N is the number of total samples and Nithe num
37、ber of the ithclass samples. </p><p> IV. E XPERIMENTAL RESULTS AND ANALYSIS </p><p> When identified by human eyes, colors are divided into eleven categories as red, green, blue, yello
38、w, purple, orange, pink, brown, gray, white and black, shown in Fig. 2. </p><p> The evaluation algorithm is performed respectively on RGB space, CMY space, YUV space, I1I2I3 spaceand
39、 HSI space. Feature parameter and assessment indicators are shown in Table Ⅰ.</p><p> Seen from Table Ⅰ, the HSI space has the best performance compared to other four analyzed color spaces. </p>
40、;<p> V. CONCLUSION </p><p> It is necessary to select an effective color space for colorful image processing. This paper analyzes and compares the performance of five common color spaces base
41、d on divisibility criterion. Experimental results show that HSI color space has the best divisibility performance compared with the other four spaces. It provides a basis for color space selection in color rec
42、ognition. </p><p> ACKNOWLEDGMENT </p><p> This work was supported by a grant from Natural Science Foundation of Liaoning Province (Grant number: 20102153). </p><p&
43、gt; REFERENCES </p><p> [1] WANG Hui, LVYan, ZHANG Ka, “Research on Color Space Applicable to Wood Species Recognition”, FORESTRY MACHINERY & WOODWORKING </p><p> EQUIPMENT, Vol.37, pp.
44、20-22,2009. </p><p> [2] Palus, H. Representations of color images in different color spaces, The Color Image Processing Handbook. London: Chapman& Hall,1998. </p><p> [3] WANG Y
45、an-song, JIN Wei-qi, “Surface Inspection Based on Color Clustering of Mapping Chromatism”, Transactions of BeijingInstitute of Technology, Vol.30,pp.74-78,2010. </p><p> [4] CAO Jian qiu, WA
46、NG Hua qing and LAN Zhang li, “Skin Color D ivision Base onModified YCrCb Color Space”, JOURNAL OF CHONGQ ING JIAOTONG UN IVERSITY( NATURAL SC IENCE) , Vol. 29, pp.488-492,2010. </p><p> [5] W
47、ANG Feng, MAN Li-chun and XIAO Yi-jun et al., “Color Recognition of License Plates Based on Immune Data Reduction”. JOURNAL OF SICHUAN </p><p> UNIVERSITY (ENGINEERING SCIENCE EDITION), vol.40, pp. 164-17
48、0, 2008. </p><p> [6] XU Qing, SHI Yue-xiang, XIE Wen-lan and ZHANG Zheng-zhen, “Method </p><p> of face detection based on improved YUV color space”, Computer Engineering and Applications, V
49、ol. 44, pp.158-162,2008. </p><p> [7] HAN Xiaowei, Study on Key Technologies of Color Image Processing, Northeast University,2005. </p><p> [8] LIU Zhongwei, ZHANG Yujin, “A Compar
50、itive and Analysis Study of Ten </p><p> color Feature-based Image Retrieval Algorithms”,SIGNAL PROCESSING, Vol.16, pp.79-83, 2000. </p><p> [9] Liu Jin, Chen Gi, Yu Ruizhao, “Development of
51、 Computer Color Science”, COMPUTER ENGINEERING,2,1997. </p><p> [10] YANG Shuying.Pattern recognition and Intelligent Computation: Matlab Technolgoy, Beijing: Electronic Industry Press, 2008. </p>
52、<p><b> 中文譯文 </b></p><p> 2011第八屆模糊系統(tǒng)與知識挖掘國際學術會議(FSKD)</p><p> 關于顏色識別中顏色特征分析的方法</p><p><b> 紀建偉 齊曉軒</b></p><p><b> 信電與電氣工程學院<
53、/b></p><p><b> 沈陽農(nóng)業(yè)大學</b></p><p><b> 沈陽,中國</b></p><p> 摘要:分析五種常用的顏色空間的特征并研究其分別對顏色識別的影響。基于距</p><p> 離標準的可除性鑒定被用來評定每個顏色空間內(nèi)的顏色特征,實驗結果表明HSI&l
54、t;/p><p> 顏色空間可除性最強。 </p><p> 關鍵詞:顏色空間;顏色識別;特征分析;可除性標準 </p><p><b> I. 概述 </b></p><p> 顏色是描述色彩圖像時最直觀的視覺特征。鑒于顏色特征幾乎不受范圍,旋轉(zhuǎn)及轉(zhuǎn)化對輸入圖像的干擾,顏色被廣泛地應用于圖像識別【1】。色彩圖像中
55、的顏色可由不同的顏色空間模式規(guī)定,比如RGB空間,CMY空間,I1I2I3空間,YUV空間和HSI空間,其中,RGB是最基本也是最常見的顏色空間,并且可以很容易的映入其他顏色空間中。但是,RGB空間與顏色直覺不一致,而且過于容易被光線影響。此空間的三個顏色分量是互相關聯(lián)的【2】。CMY空間通過RGB空間分量補充性分量來表現(xiàn)顏色。常被用于彩色電視系統(tǒng)的YUV空間通過Y,U,V三個波道來定義像素。Y表示的是亮度信息,U和V是色差,并決定整體
56、色差,而RGB則是靠三個分量之間的差別來影響整體色差的。HIS空間與人類對顏色的直覺相一致,其三個分量互相獨立,并且可以分別覺察到每個分量的變化,但是HSI空間中的非線性變化可能導致當飽和度低的時候出現(xiàn)大量的運算及顏色空間的異常。然而在YCbCr顏色空間中,色度成分和亮度成分是相互依賴的。除此之外,由于從YCbCr空間到RGB空間的轉(zhuǎn)換是很簡單的線性轉(zhuǎn)化,所以前者通常被應用于視頻編碼壓縮領域。YUV空間,YCbCr空間和</p&g
57、t;<p> II.顏色空間及其轉(zhuǎn)化</p><p> 建立并選擇一個適合的顏色空間對獲得一種有效的顏色特征來描述色彩圖像的特征至關重要。不同的顏色空間用于不同的研究目的。顏色空間是指用三維空間的數(shù)組來定義顏色。在色彩圖像的處理過程中,顏色空間又稱顏色模型,或顏色坐標。通過某些轉(zhuǎn)化,可以將一個色彩空間轉(zhuǎn)換為另一個。下面是一些顏色空間的介紹及其轉(zhuǎn)化。 </p><p>
58、A. RGB顏色空間 </p><p> 光譜的三個原色是紅(R),綠(G),藍(B),所有的顏色都能用三種基本組合起來形成。在數(shù)碼影像中,R,G,B的取值范圍0到255。在三維坐標空間中的多維數(shù)據(jù)集可用于描述 RGB 顏色空間,紅,綠,藍分別為軸線,如圖表1所示。 </p><p> RGB顏色空間最主要的缺點如下所列: </p><p> 非直觀性。很難從
59、RGB數(shù)據(jù)庫中看到顏色本身所表示的認知屬性。</p><p> 非一致性。RGB顏色空間中兩種顏色間的感知區(qū)別與其間的距離是不同的。</p><p><b> 依賴于硬件設備 </b></p><p> 總之,RGB空間與設備相關,是一個不完備的直觀顏色說明。為了解決這些</p><p> 問題,采用其他更符合顏
60、色視覺特征的顏色空間,使得RGB空間可以很容易映射</p><p><b> 到其中。 </b></p><p> B.CMY(CMYK)顏色空間 </p><p> CMY 空間是笛卡爾直角坐標系的空間結構,其三個主要組件是青色(C),品紅(M),黃色(Y)。相減混色模式以吸收三基色比例不同而形成不同的顏色。CMY空間被廣泛應用于像噴墨
61、打印機一類的非發(fā)射顯示器。理論上來說,三種等量基色可形成黑色,但是由于目前制造工藝還不能造出高純度的油墨,CMY相加的結果實際是一種暗紅色。一般而言,要想得到高純度的黑色就要加入第四個基色,也就是黑色;這就是CMYK顏色空間。CMY 空間不是很直觀且非線性,它的三個組件是紅,綠,藍三個互相補充的顏色,在CMY模型中,顏色是從白光中減去一定成分得到的。其轉(zhuǎn)化如下所示:從RGB空間到CMY空間的轉(zhuǎn)化如下所示: </p><
62、;p> C.YUV和YCbCr顏色空間 </p><p> YUV空間和YCbCr空間都含有一個亮度元素和兩個色度元素。在YUV空間中,Y表示明亮度,而U和V表示的則是色差,它的亮度信號Y和色度信號U、V是分離的,而且,YUV 空間可以減少由人類視覺特性的數(shù)字彩色圖像所需的存儲容量。在YCbCr空間中,Y是指亮度分量,Cb指藍色色度分量,而Cr指紅色色度分量;其優(yōu)點顯而易見:顏色分量與亮度元素相分離,并
63、可從RGB空間進行線性轉(zhuǎn)換。通過以下方程式可大致解釋從RGB到YUV的轉(zhuǎn)換關系: </p><p> D.HSI顏色空間 </p><p> 它反映了人的視覺系統(tǒng)感知彩色的方式,以色調(diào)(H)、飽和度(S)和強度(I)三種基本特征量來感知顏色;與其相似的還有HSV顏色空間(色相h,飽和度s,色調(diào)v)和HSB顏色空間(色相h,飽和度s,亮度b),這些都屬于極坐標空間的結構,它們共同的優(yōu)點是
64、可以直觀的描述顏色,且大多可以從RGB空間進行線性轉(zhuǎn)換。HSI模型的建立基于兩個重要的事實: 一是I分量與圖像的彩色信息無關;二是H和S分量與人感受顏色的方式是緊密相聯(lián)的,其中H分量對顏色的描述能力最接近于人類的視覺,因此,它的區(qū)分力也是最強的【8】。 RGB空間到HSI空間的轉(zhuǎn)換如下方程式所示: </p><p> 有三元素的HSI顏色空間與人類習慣相適應,可以更好的描述顏色。但色差中依然存在非線性的缺點,尤
65、其是H分量的顏色與角度。 </p><p> E.I1I2I3顏色空間 </p><p> RGB 空間到I1I2I3 空間的線性轉(zhuǎn)換如下方程式以得到三個顏色直方特征: 由公式(7)可知,I1,I2,I3 的數(shù)值可正可負,在圖像識別中,I1I2I3空間具有最佳的非相關性。 </p><p> III.顏色空間的特征分析 </p><p>
66、; 通過顏色空間,抽象、主觀的視覺感知可被轉(zhuǎn)化為三維空間中的特定位置、矢量,從而有可能使彩色圖像和設備的顏色特征可視化。顏色空間是顏色識別的重要工具,各種混合系統(tǒng)有其相應的顏色空間并有不同的屬性和各自的優(yōu)缺點。顏色空間的有效性是處理彩色圖像的關鍵,可除性標準則被用來檢測不同顏色空間對顏色的分類。距離判據(jù)具有簡明清晰的概念,即,類屬中距離越小,類屬間距離越大,可除性便越大。下面的特征分析運算法則便是基于距離判據(jù)【10】。 計算均值向量和
67、i 類樣本的協(xié)方差,N 是總樣本數(shù),Ni 是i 類樣本數(shù)。</p><p> 計 算 總 的 均 值 向 量和協(xié)方差 。</p><p> 構造i 類 樣 本 的 散 射 矩陣。</p><p> 構 建 在 同一類 樣 本 的 總 散 射 矩陣。</p><p> 構 建 不同的 類之間 樣 本 的 總 散 射 矩陣。</p&
68、gt;<p> 定義評價指標,如下所示: </p><p> IV.實驗結果及分析 </p><p> 顏色被人的眼睛分為十一類,紅色、綠色、藍色、黃色、紫色、橙色、粉紅色、棕色、灰色、白色和黑色,如圖表2。 對RGB空間,CMY空間,YUV空間,I1I2I3空間,和HSI空間分別進行評估運算,特征參數(shù)和評價指標如表格I所示。 從表格I 可知,HSI 空間與其它四個所
69、分析的顏色空間相比最具可除性。 </p><p><b> V.總論 </b></p><p> 必須選擇有效的顏色空間來處理彩色圖像。本文在可除性標準的基礎上,對五個常用的顏色空間進行分析和比較,實驗結果表明HSI 顏色空間具有最強的可除性。這也為顏色識別中的顏色空間選擇提供了基礎。 </p><p><b> 感謝 <
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯中文不同顏色模式感知顏色屬性顏色偏好建模
- 外文翻譯英文不同顏色模式感知顏色屬性顏色偏好建模
- 舌象顏色空間分析及顏色特征研究.pdf
- 利用顏色和形狀特征的雜草識別方法研究.pdf
- 顏色特征對自然場景識別中整體屬性的影響
- 多顏色空間融合的顏色特征提取方法及應用.pdf
- 基于顏色特征的異色物識別方法研究.pdf
- 顏色特征對自然場景識別中整體屬性的影響.pdf
- 基于紋理和顏色特征的植物葉片識別方法研究.pdf
- 基于改進顏色直方圖和車窗檢測的車身顏色識別方法研究.pdf
- 基于多顏色空間特征融合的作物識別方法研究.pdf
- 基于顏色與紋理特征的木材表面缺陷識別方法.pdf
- 關于運動目標特征提取以及車輛顏色識別算法的研究.pdf
- 淺談顏色詞的翻譯——顏色詞與語境
- 基于顏色特征的圖像檢索方法研究.pdf
- 基于顏色特征的皮革分類方法研究.pdf
- 基于顏色特征的車輛計數(shù)方法研究.pdf
- 基于顏色特征的麥穗圖像識別算法研究.pdf
- 可變顏色的數(shù)字電壓表【外文翻譯】
- 管路和識別的顏色
評論
0/150
提交評論