版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 中文1120字</b></p><p> 畢業(yè)論文(設(shè)計(jì))英文文獻(xiàn)翻譯</p><p><b> 外文文獻(xiàn)</b></p><p> The development of probability theory</p><p><b> Summary&
2、lt;/b></p><p> This paper consist therefore of two parts: The first is concerned with the development of the calyculus of chance before Bernoulli in order to provide a background for the achievement of J
3、a kob Bernoulli and will emphasize especially the role of Leibniz. The second part deals with the relationship between Leibniz add Bernoulli and with Bernoulli himself, particularly with the question how it came about th
4、at he introduced probability into mathematics.</p><p> First some preliminary remarks: </p><p> Ja kob Bernoulli is of special interest to me, because he is the founder of a mathematical theor
5、y of probability. That is to say that it is mainly due to him that a concept of probability was introduced into a field of mathematics.</p><p><b> Text</b></p><p> Mathematics cou
6、ld call the calculus of games of chance before Bernoulli. This has another consequence that makes up for a whole programme: The mathematical tools of this calculus should be applied in the whole realm of areas which used
7、 a concept of probability. In other words,the Bernoullian probability theory should be applied not only to games of chance and mortality questions but also to fields like jurisprudence, medicine, etc. </p><p&g
8、t; My paper consists therefore of two parts: The first is concerned with the development of the calculus of chance before Bernoulli in order to provide a background or the achievements of Ja kob Bernoulli and will empha
9、size especially the role of Leibniz. The second part deals with the relationship between Leibniz and Bernoulli and Bernoulli himself, particularly with the question how it came about that he introduced probability into m
10、athematics. </p><p> Whenever one asks why something like a calculus of probabilities arose in the 17th century, one already assumes several things: for instance that before the 17th century it did not exis
11、t, and that only then and not later did such a calculus emerge. If one examines the quite impressive literature on the history of probability, one finds that it is by no means a foregone conclusion that there was no cal
12、culus of probabilities before the 17th century. Even if one disregards numerous references to q</p><p> People made in some arithmetic works to solve problems of games of chance by computation. But since si
13、milar problems form the major part of the early writings on probability in the 17th century, one may be induced to ask why then a calculus of probabilities did not emerge in the late 15th century. One could say many thin
14、gs: For example, that these early game calculations in fact represent one branch of a development which ultimately resulted in a calculus of probabilities. Then why shouldn't one</p><p> We need not con
15、sider the argument that practically all the solutions of problems of games of chance proposed in the 15th and 16th centuries could have been viewed as inexact, and thus at best as approximate, by Fermat in the middle of
16、 the 17th century, that is, before the emergence of a calculus of probabilities. </p><p> The assertion that no concept of probability was applied to games of chance up to the middle of the 17th century can
17、 mean either that there existed no concept of probability (or none suitable), or that though such a concept existed it was not applied to games of chance. I consider the latter to be correct, and in this I differ from Ha
18、cking, who argues that an appropriate concept of probability was first devised in the 17th century. </p><p> I should like to mention that Hacking(Mathematician)and I agree on a number of points. For instan
19、ce, on the significance of the legal tradition and of the practical ("-low") sciences: Hacking makes such factors responsible for the emergence of a new concept of probability, suited to a game calculus, while
20、perceive them as bringing about the transfer and quantification of a pre-existent probability-concept.</p><p><b> 譯文</b></p><p> 概率論的發(fā)展作者;龍騰施耐德</p><p> 摘要本文由兩部分構(gòu)成:首
21、先是提供了一個(gè)為有關(guān)與發(fā)展雅各布 - 前伯努利相關(guān)背景,雅各布對(duì)數(shù)學(xué)做出了不可磨滅的貢獻(xiàn)。特別是雅各布發(fā)現(xiàn)了伯努利和萊布尼茨作用。第二,通過(guò)萊布尼茨和伯努利作用把數(shù)學(xué)概率引入到顆粒的問(wèn)題與從而解釋了顆粒是怎樣排列的問(wèn)題。</p><p><b> 初步介紹</b></p><p> 雅各布·伯努利是他的研究特別感興趣,后來(lái)他成為了概率的數(shù)學(xué)理論的創(chuàng)始人。
22、也就是說(shuō),它主要的貢獻(xiàn)是;他是一個(gè)概率應(yīng)用到數(shù)學(xué)領(lǐng)域。</p><p><b> 正文</b></p><p> 在伯努利時(shí)代之前,數(shù)學(xué)可以稱之為賭博游戲的演算。但在伯努利之后,整個(gè)領(lǐng)域的地區(qū)使用了概率的概念應(yīng)適用于在演算數(shù)學(xué)中。換句話說(shuō)應(yīng)伯努利概率理論不僅適用于賭博游戲和死亡率的問(wèn)題,也試用法理學(xué)領(lǐng)域,等。</p><p> 因此,我的
23、論文兩部分組成:首先是了解有利于發(fā)展的伯努利以前的演算為雅各布·伯努利提供一個(gè)其成就的背景,從而強(qiáng)調(diào)萊布尼茨的作用。第二部分處理的是萊布尼茲和伯努利和伯努利之間的關(guān)系自己,特別是介紹概率的概念應(yīng)適用于在本演算數(shù)學(xué)這一理論的由來(lái)。 </p><p> 在17世紀(jì),每當(dāng)有人問(wèn),為什么在17世紀(jì)出現(xiàn)類似的概率的演算?人們已經(jīng)認(rèn)同幾件事情:例如;17世紀(jì)之前,概率演算并不存在,后來(lái)才出現(xiàn)這樣的演算。如果你檢查
24、相當(dāng)大量的概率的歷史文獻(xiàn),你會(huì)發(fā)現(xiàn)它是沒(méi)有相關(guān)的歷史記。這意味著,17世紀(jì)前,概率演算根本不存在。即使文獻(xiàn)中多次提到古代阿拉伯人和猶太人的定性和定量調(diào)查,這表明只是十分模糊的概率應(yīng)用(概率的概念和其使用的統(tǒng)計(jì)方法)。這一問(wèn)題一直到十五世紀(jì)還沒(méi)有進(jìn)展。</p><p> 人們經(jīng)常把概率應(yīng)用到某些賭博游戲中,從而解決賭博中數(shù)學(xué)問(wèn)題。所以與之差不多相似的問(wèn)題,就演變形成早期的概率理論重要組成部分。但是概率存在于17世
25、紀(jì)的著作,從而可能誘發(fā)一種疑問(wèn)“為什么概率演算沒(méi)有出現(xiàn)在15世紀(jì)后期?”。關(guān)于這個(gè)問(wèn)題可以說(shuō)很多事情:例如,事實(shí)上,這些早期的賭博游戲中的計(jì)算僅代表的概率發(fā)展的一個(gè)分支。那么,在十七世紀(jì)之前,為什么找不到概率演算的起源地?難道僅僅因?yàn)闆](méi)有一個(gè)合適的概率概念嗎?可是,一旦演算概率發(fā)展起來(lái),那么古代的賭博游戲?qū)⒊蔀樾碌目茖W(xué)的重要組成部分。</p><p> 我們不認(rèn)同在15世紀(jì)和16世紀(jì)才提出賭博等問(wèn)題的解決方法是
26、精確的的理論。因此精確的是,概率的定義是由在17世紀(jì)中葉的帕斯卡爾和費(fèi)爾馬提出的,也就是在出現(xiàn)概率演算之前的時(shí)期。在十七世紀(jì)中期,概率的概念沒(méi)有被應(yīng)用到賭博中。這可能意味著要么根本沒(méi)有概率計(jì)算,要么概率不能應(yīng)用于賭博中。</p><p> 我認(rèn)為后者是正確的。我與海格的觀點(diǎn)不同。他認(rèn)為,適當(dāng)?shù)母怕实母拍钭钤缡窃?7世紀(jì)出現(xiàn)的。我想提一提,我和海格還是有一些相同的觀點(diǎn)。例如,法律傳統(tǒng)意義上的實(shí)用(“低”)科學(xué):海
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 概率論與數(shù)理統(tǒng)計(jì)
- 概率論與數(shù)理統(tǒng)計(jì)[0001]
- 概率論與數(shù)理統(tǒng)計(jì)習(xí)題
- 概率論與數(shù)理統(tǒng)計(jì)教材
- 《概率論與數(shù)理統(tǒng)計(jì)》論文
- 概率論與數(shù)理統(tǒng)計(jì)試題
- 概率論與數(shù)理統(tǒng)計(jì)試題
- 概率論與數(shù)理統(tǒng)計(jì)答案
- 概率論與數(shù)理統(tǒng)計(jì)題庫(kù)
- 概率論與數(shù)理統(tǒng)計(jì)論文
- 概率論與數(shù)理統(tǒng)計(jì)概率歷史介紹
- 概率論與數(shù)理統(tǒng)計(jì)試卷
- 概率論與數(shù)理統(tǒng)計(jì)答案
- 概率論與數(shù)理統(tǒng)計(jì)習(xí)題
- 概率論與數(shù)理統(tǒng)計(jì)1.6
- 概率論與數(shù)理統(tǒng)計(jì)[0002]
- 概率論與數(shù)理統(tǒng)計(jì)論文
- 概率論與數(shù)理統(tǒng)計(jì)教案
- 學(xué)年概率論與數(shù)理統(tǒng)計(jì)
- 概率論與數(shù)理統(tǒng)計(jì)論文
評(píng)論
0/150
提交評(píng)論