電氣專業(yè)畢業(yè)設(shè)計外文翻譯7_第1頁
已閱讀1頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  附錄A 譯文</b></p><p>  1)方向保護基礎(chǔ)[9]</p><p>  早期,對于遠離發(fā)電站的用戶,為改善其供電可靠性提出了雙回線供電的設(shè)想。當(dāng)然,也可以架設(shè)不同的兩回線給用戶供電。在系統(tǒng)發(fā)生故障后,把用戶切換至任一條正常的線路。但更好的連續(xù)供電方式是正常以雙回線同時供電。當(dāng)發(fā)生故障時,只斷開故障線。圖1—1所示為一個單電源

2、、單負載、雙回輸電線系統(tǒng)。對該系統(tǒng)配置合適的斷路器后,當(dāng)一回線發(fā)生故障時,仍可對負載供電。為使這種供電方式更為有效,還需配置合適的繼電保護系統(tǒng),否則,昂貴的電力設(shè)備不能發(fā)揮其預(yù)期的作用??梢钥紤]在四個斷路器上裝設(shè)瞬時和延時起動繼電器。顯然,這種類型的繼電器無法對所有線路故障進行協(xié)調(diào)配合。例如,故障點在靠近斷路器D的線路端,D跳閘應(yīng)比B快,反之,B應(yīng)比D快。顯然,如果要想使繼電器配合協(xié)調(diào),繼電保護工程師必須尋求除了延時以外的其他途徑。&l

3、t;/p><p>  無論故障點靠近斷路器B或D的哪一端,流過斷路器B和D的故障電流大小是相同的。因此繼電保護的配合必須以此為基礎(chǔ),而不是放在從故障開始啟動的延時上。我們觀察通過斷路器B或D的電流方向是隨故障點發(fā)生在哪一條線路上變化的。對于A和B之間的線路上的故障,通過斷路器B的電流方向為從負載母線流向故障點。對于斷路器D,電流通過斷路器流向負載母線。在這種情況下,斷路器B應(yīng)跳閘,D不應(yīng)跳閘。要達到這個目的,我們可在

4、斷路器B和D上裝設(shè)方向繼電器,該方向繼電器的聯(lián)接應(yīng)保證只有當(dāng)通過它們的電流方向為離開負載母線時才起動。</p><p><b>  圖1—1</b></p><p>  對于圖1—1所示的系統(tǒng),在斷路器B和D裝設(shè)了方向過流延時繼電器后,繼電器的配合才能實現(xiàn)。斷路器A和C裝設(shè)元方向的過流延時繼電器及瞬時動作的電流繼電器。各個繼電器整定配合如下:方向繼電器不能設(shè)置延時,它

5、們只有本身固有的動作時間。A和C的延時過流繼電器通過電流整定使它們作為負載母線或負載設(shè)備故障的后備保護。斷路器A和C的瞬時動作元件通過電流整定使它們在負載母線故障時不動作。于是快速保護可以保護發(fā)電機和負載之間線路長度的大部分。從圖中我們還可看到,在斷路器A或C的線路側(cè)發(fā)生的故障使發(fā)電機電壓崩潰,在斷路器A和C上的瞬時繼電器不能真正瞬時切除故障,因為電力設(shè)備動作需要時間,在這個期間內(nèi),流過斷路器B和D的電流很小甚至為0,因此在這種故障狀態(tài)

6、下,只有等到發(fā)電廠有關(guān)的斷路器動作后,斷路器B和D才動作。這就是我們所說的順序跳閘,通常在上述情況下這樣做是允許的。</p><p>  在一個交流系統(tǒng)中,通過電流矢量與其他參考矢量(例如電壓矢量)的比較,可以確定電流的方向。圖1—1所示系統(tǒng)的參考矢量可從負載母線電壓矢量推出。由于在該交流系統(tǒng)中,線路和設(shè)備含有電抗,電流和功率的瞬時方向不能確定,這是顯而易見的,因為當(dāng)有電壓時,相位落后的電流取樣的瞬時值取決于它在

7、電壓周期中的瞬間,可能為正,也可能為負或為零。因此,電壓、電流矢量必須在一個時間間隔內(nèi)采樣。為了較為準確的采樣,時間間隔可從一個半周期到一個周期。目前正在進行更短時間的采樣的研究工作。這個研究工作是給繼電器加上一個預(yù)測電路,試圖以此確定未來時間內(nèi)矢量的情況。由于要在電力系統(tǒng)電磁暫態(tài)過程中預(yù)測,這項工作比較復(fù)雜。通常用于判斷方向的時間越短,所做判斷的可靠性越差。</p><p><b>  2)距離保護介

8、紹</b></p><p>  假如在圖1—2(a)所示的電力系統(tǒng)裝設(shè)了帶有方向的過流延時繼電器,將會出現(xiàn)一些問題。我們知道一個完善的繼電保護系統(tǒng)在電力系統(tǒng)所裝設(shè)的設(shè)備被自動斷開后的任何運行狀態(tài)下都應(yīng)具有正確的配合協(xié)調(diào)性。下面請看該系統(tǒng)僅有發(fā)電機1一個電源時的情況。對于這種狀況各繼電器的動作能正確配合。當(dāng)故障發(fā)生在斷路器C和D之間的線路上時,流過斷路器A和D的電流方向為跳閘方向。為保證選擇性,斷路器A

9、的跳閘整定時間必須比D長。如僅有發(fā)電機2這一個電源,故障在斷路器A和B之間線路上,對于斷路器A和D來講,流過的電流方向仍是跳閘方向,但這次斷路器A應(yīng)在斷路器D之前跳閘。因此當(dāng)電源饋電地點發(fā)生改變時,無法設(shè)定這種繼電保護系統(tǒng)協(xié)調(diào)兩條線上的故障。</p><p>  在每一個斷路器安裝處,流過斷路器的電流和斷路器處的電壓都是可以測得的。如果斷路器處的電壓(通常是母線電壓)被流過斷路器的電流去除,就可確定斷路器到故障點

10、的歐姆阻抗。由于到故障點的距離與歐姆阻抗有關(guān),故這種繼電器元件常稱作距離繼電器或阻抗繼電器。如果這種繼電器配上正比于距離的跳閘時間和方向元件,則對于兩個以上的多電源系統(tǒng)來說,各保護之間的配合是令人滿意的。以往這種繼電器未得到廣泛采用。保護之間的配合通常采用的是其他不同的方式,但其原理是相同的。</p><p>  通常,一般電力網(wǎng)絡(luò)輸電線都使用分段型距離繼電器進行保護,對于各段區(qū)域內(nèi)的故障,繼電器的動作被設(shè)計得盡

11、可能的快。一般可以按三段整定,對應(yīng)三個不同的距離,第一、二段的應(yīng)用通常是很明確的,對于第一段保護范圍的故障,將跳閘動作整定到盡可能快。保護范圍通常為線路的80%。當(dāng)繼電器整定的范圍超過80%時,由于范圍過長和調(diào)整誤差,在下一條線路發(fā)生故障時易誤動。繼電器的第二段是保護本線路第一段不能保護的部分,第二段通常整定為大約線路的120%并延時跳閘。第三段提供后備保護和作為其他用途,它的保護范圍不直接定義為其所在的線路。</p>&

12、lt;p>  圖1—2(a) 帶有方向的過流延時繼電器的電力系統(tǒng)</p><p>  三段式距離保護動作特陛如圖1—2(b)所示。每一個繼電器都有—個方向阻抗測量元件。</p><p>  圖1-2(b) 一般分段型時限—距離保護特性</p><p>  A處的繼電器的I段阻抗范圍是這樣整定的,當(dāng)故障發(fā)生在饋電線路1靠近首端的80%內(nèi),故障電流為圖示方向時,

13、所設(shè)定的第一段阻抗范圍可瞬時起動,跳開有關(guān)的斷路器。該繼電器的二段定值整定范圍包括饋電線1的全部和饋電線2靠近首端的20%~30%,但經(jīng)過一個短延時后跳閘,第三段整定范圍包括發(fā)生在饋電線l、2,甚至可能更遠的故障,跳閘延時時間更長。把這三段的測量組合起來,把有關(guān)兩條饋電線的繼電器B、c、D作用合在一起,再加上如箭頭所示的測量方向,則形成了如圖1—2(b)所示的完整的時限——距離特性。顯然,饋電線2上的任何故障都被C處的繼電器動作而瞬時斷

14、開,而A處的繼電器要在延時后起動,故饋電線1仍保持運行。</p><p>  以上我們所討論的距離保護在線路的兩端各有一部分在發(fā)生故障時不能被快速保護切除。通常,這部分區(qū)域內(nèi)的故障被一端瞬時切除,而另一端要靠延時切除。這樣的作法在圖1—2(b) 一般分段型時限——距離保護特性一些電力系統(tǒng)是允許的,在另一些電力系統(tǒng)可能導(dǎo)致系統(tǒng)的不穩(wěn)定,為此,在這些系統(tǒng)中必須裝設(shè)全線速動保護。</p><p&g

15、t;  3)電力線高頻(載波)方向比較式保護的基本原理</p><p>  高頻保護的最先應(yīng)用就是高頻方向比較式保護。雖然它基本上已被高頻相差保護和高頻距離保護所替代,但它仍是一種重要的保護方式。本保護的基本原理是通過方向繼電器比較被保護線路兩端的短路功率的方向。在穿越故障(線路外部故障)的情況下,被保護線路總有一端的短路功率流向線路外。在線路內(nèi)部故障情況下,不是在線路的兩端(雙側(cè)。電源)就是在線路的一端(單側(cè)電

16、源),短路功率一定流入線路。在外部故障情況下,近故障端的方向繼電器檢測到短路功率流向線路外,該端就開始發(fā)送載波信號,該信號就被用來閉鎖線路本側(cè)端(近故障端)和對側(cè)端(遠離故障端)跳閘。而遠端的短路功率流向線路內(nèi),故只有收到載波信號后才可知道是外部故障。</p><p>  通常,裝置僅在故障情況下發(fā)送載波信號,這就允許使用高一些的功率信號,如10w。該裝置需要檢測發(fā)生故障的繼電器和接通跳閘回路的繼電器,如果收到本

17、端的方向信號,跳閘回路接通。方向繼電器的工作特性應(yīng)選擇為功率流進線路時起動,流出線路時不動。</p><p>  早期這種類型的保護,對所有種類的故障,起動繼電器都是過流型。為避免在負荷情況下持續(xù)發(fā)送載波信號,接地故障的定值可小于額定負荷值,而相問故障的定值是最大負荷電流的200%,甚至更大。隨著輸電系統(tǒng)的發(fā)展,負荷電流和故障電流之間的差別越來越小,以至于最大的負荷電流和最小的故障電流(發(fā)電廠停機)可比擬,因而上

18、述相間故障整定值不可再用。對于方向比較型保護,這個問題一般可用距離繼電器取代過流型起動繼電器來解決。距離繼電器并不完全取決于電流,而是有一個特定的阻抗整定值,實際上與負載狀況無關(guān)。由電流大小決定是否起動的繼電器仍可使用在接地故障保護中。</p><p>  所有的方向比較保護都使用單一載頻。任一端在跳閘之前,一定有故障電流流過使該端的起動繼電器動作。這基本上是一種單端跳閘保護。對于互連系統(tǒng),這種保護是可行的。4)

19、差動保護</p><p>  用于電力系統(tǒng)的大多數(shù)電氣設(shè)備與一般輸電線路的長度相比,實際尺寸都比較小,因此利用導(dǎo)線直接連接就可以使設(shè)備兩端之間的聯(lián)絡(luò)變得非常經(jīng)濟和可靠,保護配置就可采用簡單而又非常有效的差動保護。從概念上講,流入設(shè)備的電流可以很簡單地與流出的電流進行比較。如果在流入、流出電流之間有差異,設(shè)備就被斷開,如無差異,設(shè)備正常運行。這種保護原理可設(shè)計為對于設(shè)備內(nèi)部故障相當(dāng)靈敏,對于外部故障則非常不敏感。因

20、此采用差動原理的保護本身具有繼電保護的選擇性。</p><p>  差動保護最簡單的應(yīng)用見圖1—3,圖中一段簡單的電力線路就是采用差動繼電器保護的。該繼電器通常由三個線圈組成,其一檢測差電流并起動跳閘回路,我們稱之為工作線圈,在圖中用符號O表示。另外兩個線圈是制動線圈,在圖中用符號R表示。在實際中,由于制造和其他一些原因,兩側(cè)電流互感器的特性不可能完全一致,存在一些差異,制動線圈能防止由此而產(chǎn)生的誤動,而在理論上

21、,制動線圈是不起作用的。圖1—3給出了在外部故障時,繼電器不動作跳閘情況下的電流流向。電流,,進入電力回路后,在離開回路時并未改變,為了簡單起見,設(shè)電流互感器的變比為1:1,兩側(cè)電流互感器的二次繞組連接后,使,。僅通過差動繼電器的制動線圈循環(huán)流動。如果在兩個電流互感器之間,電流同時離開或進入電力回路(內(nèi)部故障),兩個電流互感器中的電流將不同,差電流將通過繼電器的工作線圈。</p><p><b>  圖

22、1—3</b></p><p>  圖1—3中的電力回路被簡化了,只用了一根導(dǎo)體表示,它也可用發(fā)電機、變壓器或其他電氣設(shè)備繞組替代。值得注意的是采用差動原理的保護不能檢測繞組的匝間短路,例如由電抗器線圈組成的電力回路中的匝間短路。通常,差動繼電器保護三相設(shè)備,理論上講,三相差動保護的連接仍相對簡單,但實際要復(fù)雜些。在以上討論的簡單差動繼電器原理的保護基礎(chǔ)上實際還有很多改進。</p>&l

23、t;p>  5)發(fā)電機轉(zhuǎn)子接地保護[10]</p><p>  有兩種方法可以檢測轉(zhuǎn)子回路接地故障。一種方法是在轉(zhuǎn)子回路兩端跨接一個高電阻,其中點經(jīng)一個靈敏的繼電器線圈接地(如圖1—4所示),這個繼電器可檢測轉(zhuǎn)子回路大部分接地故障。但在轉(zhuǎn)子磁場繞組中部發(fā)生接地時,由于這一點與電阻中點等電位而存在保護死區(qū)。保護投入后,該死區(qū)的檢驗可通過所裝設(shè)的分接開關(guān)把繼電器的連接從電阻的中點稍微移向電阻的一端來實現(xiàn),也可把

24、一半電阻換成非線性電阻。由于非線性電阻值隨轉(zhuǎn)子電壓不同而改變,所以電阻中點的抽頭電壓隨著轉(zhuǎn)子磁場絕緣狀況的改變而不斷變化。</p><p>  圖1—4采用靈敏繼電器的發(fā)電機磁場故障保護</p><p>  第二種方法是利用附加在轉(zhuǎn)子勵磁回路正極的小電源,與其串接的有故障檢測繼電器和一個高電阻(見圖1—5)。轉(zhuǎn)子勵磁系統(tǒng)任一點故障都將有足夠大的電流通過繼電器使之起動。該轉(zhuǎn)子磁場繞組接地故障

25、繼電器通常是瞬時動作的,在對發(fā)電機沒有直接危害的情況下接成報警方式。 </p><p>  從上兩圖中可看到,接地電流是通過轉(zhuǎn)子本體從大地返回的,然而由于轉(zhuǎn)子和定子之間通過軸承油膜接觸,軸承油膜是不導(dǎo)電的(或間隙性導(dǎo)電),故必需通過一個附加接地炭刷把轉(zhuǎn)子大軸接地。裝接地炭刷的另一個主要目的是釋放汽輪機轉(zhuǎn)軸在旋轉(zhuǎn)中由于蒸汽摩擦而產(chǎn)生的靜電,從而防止軸承表面產(chǎn)生凹點。</p><p>  在一

26、些先進發(fā)電機中,傳統(tǒng)的直流勵磁機已被具有旋轉(zhuǎn)電樞的交流發(fā)電機取代,通過裝在轉(zhuǎn)子上的整流器向主發(fā)電機的轉(zhuǎn)子磁場繞組供電,從而做到了“無刷勵磁”。但是這樣作后,由于難以接觸到主直流磁場回路而不能直接檢測轉(zhuǎn)子接地故障。</p><p>  轉(zhuǎn)子繞組一點接地故障(或二極管開路)將引起勵磁程度的微小變化。而更嚴重的轉(zhuǎn)子繞組匝間短路(或二極管短路)多半將引起機組的異常振動。有時可用測振儀探測后,將發(fā)電機減載或跳閘。二極管本身

27、由保險熔絲保護,并且一般還配有熔絲失靈保護繼電器。</p><p>  圖1—5 采用負電位偏置的轉(zhuǎn)子接地檢測</p><p>  6)發(fā)電機變壓器組的發(fā)電機定子接地保護</p><p>  用接在發(fā)電機中性線的電流互感器上的電流繼電器,或接在配電變壓器二次繞組電流互感器上的電流繼電器可實現(xiàn)簡單的接地保護。另外利用接在電壓互感器(一次中性點接地)二次繞組上的電壓繼

28、電器也可實現(xiàn)接地保護。</p><p>  某些采用低值接地電阻,限制接地故障電流在200~300A之間的發(fā)電機,為把對其損害降至最小,需要裝設(shè)快速跳閘的瞬時繼電器。在變壓器高壓側(cè)發(fā)生接地故障時,為避免由于發(fā)電機變壓器組內(nèi)部繞組耦合電容傳遞的零序電流使繼電器誤動,整定值不得小于最大接地電流的10%。因而,保護裝置通常由兩種繼電器組成,一種為瞬時動作的繼電器,定值按最大接地電流的10%整定。另一種為按最大接地電流5

29、%整定的最小時限反時限圓盤式感應(yīng)繼電器。</p><p>  當(dāng)發(fā)電機通過高電阻(把最大定子接地電流限制到大約10A)接地時,繼電器動作允許較長的延時。在此情況下,需用定值為最大接地電流5%的雙套最小時限反時限繼電器。</p><p>  上述兩種保護系統(tǒng)對發(fā)電機定子繞組靠近中性點部分都有接地故障保護死區(qū)(一般在底部,約為定子繞組的5%~10%)。雖然靠近定子繞組中性點的接地故障不太可能由

30、電氣應(yīng)力引起,但不可排除由于機械應(yīng)力引起的接地故障,故必須裝設(shè)100%的定子繞組接地保護??尚械姆椒ㄓ邢旅鎯煞N:</p><p>  第一種方法是把編碼后的交流電流注入發(fā)電機中性線,并監(jiān)視其數(shù)值。該電流流經(jīng)發(fā)電機整個系統(tǒng)對地電容(即發(fā)電機定子繞組、發(fā)電機出口變壓器低壓側(cè)、廠用變壓器的高壓側(cè)繞組和連接線對地電容)。在這些繞組發(fā)生接地故障時將減小系統(tǒng)對地阻抗而增加注入電流的數(shù)值,如果該電流超過預(yù)先設(shè)定的基準值,保護就

31、跳開機組。</p><p>  第二種方法是利用正常時出現(xiàn)在發(fā)電機中性點的三次諧波電壓。如果故障發(fā)生在發(fā)電機中性點附近區(qū)域,反應(yīng)工頻電壓保護的電壓減少到近似于零而不能保護,故該保護覆蓋發(fā)電機定子繞組上部的90%~95%。由于補充了一種抑制多余頻率的濾波系統(tǒng),以致在由兩種繼電器覆蓋的區(qū)域里提供相當(dāng)大的重疊部分。</p><p>  上述第一種方法的優(yōu)點是:在發(fā)電機升速前,特別是經(jīng)過長期停機或

32、檢修停機后重新投入運行前,能非常方便地檢查機組絕緣電阻是否降低。在采用電壓互感器中性點接地的場合,可忽略接地電流。最小時限反時限繼電器可只被用來報警。</p><p>  應(yīng)該注意的是無論直接還是不直接連接的發(fā)電機都應(yīng)裝設(shè)匝間短路保護。在現(xiàn)代發(fā)電機上很少發(fā)生此類故障,但一旦發(fā)生,往往也伴隨接地故障而被接地保護跳開發(fā)電機。</p><p>  7)發(fā)電機出口變壓器的過勵磁保護</p&g

33、t;<p>  當(dāng)發(fā)電機出口升壓變壓器在運行中的鐵芯磁密大大超過其設(shè)計最大值時(一般為1.9 T),就有被損壞的危險,故需要采取相應(yīng)的保護措施。這種情況可發(fā)生在發(fā)電機變壓器組的運行中,但更多情況下是發(fā)生在與系統(tǒng)并列前的自動電壓調(diào)節(jié)器調(diào)壓或手動勵磁調(diào)節(jié)過程中,特別是當(dāng)發(fā)電機升速至同步或從同步降速時更易發(fā)生。</p><p>  從變壓器的基本公式E= 4.44(BA)可導(dǎo)出B=KE/fT,即磁密B正比

34、于感應(yīng)電動勢E,反比于頻率f和匝數(shù)T,,因此在這些量中不成比例的變化就有可能引起鐵芯過勵磁。如鐵芯磁密增加超過其飽和值,部分磁通將逸出鐵芯,沿著變壓器其他部分(非疊片部分)閉合,而引起渦流。</p><p>  由此產(chǎn)生的損耗取決于磁通的大小、磁通所經(jīng)金屬部件的尺寸以及物理特性,并可表</p><p><b>  現(xiàn)為下四種形式:</b></p><

35、;p>  a 勵磁電流急劇增大;</p><p><b>  b 繞組溫度升高;</b></p><p>  c 變壓器噪聲和振動增加;</p><p>  d 由于雜散磁通引起的非迭片金屬部件的過熱。</p><p>  由于變壓器的其他保護裝置不能對上述變壓器各種過勵情況提供充分的保護,故加以過勵保護。該保護既

36、可作為自動調(diào)壓設(shè)備整體的一個部分,也可單獨分出來(見圖1—6)。在這兩種保護方式中,過勵保護先通過正常的勵磁調(diào)節(jié)降低勵磁,如果未能進行必要的調(diào)整,則經(jīng)過一個短的延時(一般5~7s)后跳開發(fā)電機。</p><p>  圖1—6發(fā)電機出口變壓器過勵磁保護</p><p>  8)斷路器失靈保護的工作原理</p><p>  該保護于70年代中期首次應(yīng)用于超高壓輸電網(wǎng)。裝

37、設(shè)該保護的目的是解決跳閘繼電器已起動而斷路器斷流失敗的問題。其可能的原因有:</p><p>  (i)斷路器的跳閘線圈沒有收到跳閘命令,但在配置雙重跳閘線圈和使用直流回路MarkⅡ標準的情況下,這種情況不太可能發(fā)生,因在任一單獨的跳閘線圈斷線或電源消失仍能保證跳閘。</p><p>  (ii)由于電氣或機械故障,斷路器機構(gòu)失靈。</p><p> ?。╥ii)由

38、于超出斷路器性能范圍以外的不當(dāng)操作和某些缺陷使斷路器電流遮斷裝置失靈。</p><p>  裝設(shè)兩套故障檢測系統(tǒng)的措施用于饋線保護,如有可能也用于發(fā)電廠保護。這樣實際當(dāng)中不會出現(xiàn)第二套裝置再發(fā)生電氣故障而導(dǎo)致不能切除系統(tǒng)故障的問題。一般雙重化進行到斷路器跳閘線圈為止。這樣做以后,斷路器拒絕動作的可能性高于保護和跳閘回路失靈的可能性。這是由于各種機械、氣壓和液壓跳閘機構(gòu)和斷路器由于實際和經(jīng)濟原因不能采取雙重化。對于

39、這些機械部分失靈造成的問題用電力系統(tǒng)后備保護來解決一般是不適宜的,為此人們研究開發(fā)了斷路器失靈保護。</p><p>  這種保護的基本原理是從任意一個跳閘繼電器起動跳斷路器瞬間開始,測量故障電流持續(xù)時間,如到了預(yù)先設(shè)置的延時,故障電流仍存在,就認為該斷路器已失靈而斷開連接在失靈斷路器兩側(cè)連線上的所有斷路器。這在雙母線變電站是通過后備跳閘系統(tǒng)來完成的,而在多角形母線或其他類型母線的變電站必須提供斷路器失靈直流跳閘

40、回路。</p><p>  每一個斷路器都應(yīng)裝設(shè)斷路器失靈保護,失靈保護由二個電流檢查繼電器和四個時間繼電器組成(多角形母線變電站僅裝設(shè)兩個時間繼電器)。</p><p>  圖1—7為斷路器失靈保護的簡化電路圖。該圖中,為了簡化起見,一些雙重繼電器元件連同后備跳閘檢查小母線和有關(guān)繼電器均已省略。</p><p>  圖1—7 400kV雙母變電站斷路器失靈保護簡化

41、原理圖</p><p>  斷路器失靈狀態(tài)的檢測是通過電流檢測繼電器進行的。它們是采用靜止元件構(gòu)成的瞬時動作過電流繼電器。它們只在一個或多個電路跳閘繼電器起動后才允許起動,因此與有關(guān)的斷路器跳閘線圈同時激勵。雖然只要CT一次側(cè)有電流流過,CT二次側(cè)就有電流通過電流檢測繼電器,但只有在施加了輔助的直流電源后才可能起動。</p><p>  如跳閘繼電器起動后,斷路器拒絕切除故障,動作順序如下

42、:</p><p>  電流檢查繼電器所在的直流回路帶電,如果CT二次電流超過其定值,該電流檢測繼電器接點閉合,依次起動延時繼電器和激勵跳閘線圈。</p><p>  在延時結(jié)束之后,電流控制繼電器仍被未斷開的故障電流所激勵。正負電源被連接到與檢測出的失靈斷路器的主母線有關(guān)聯(lián)的后備識別小母線上,這些小母線帶電后,就跳開連接于同一主母線上其他的所有斷路器。個別斷路器接收后備跳閘信號是通過同一

43、母線迭擇器來實現(xiàn)的,使用隔離開關(guān)輔助接點起動后備跳閘電路。 </p><p><b>  9)電 纜[11]</b></p><p>  絕緣電纜在電力領(lǐng)域中用途很多。細電纜用作辦公室、家庭和工廠周圍的軟線;粗電纜用來連接在一定區(qū)域內(nèi)可移動的電氣設(shè)備。有些情況下,輕型電纜可負載十分重的電氣負荷,如:在電力驅(qū)動吊斗鏟這種情況下,它需用好幾千馬力。架空電纜用在有樹、接近于

44、大廈或其他建筑物而用其他明線行不通的配電線路中。地下電纜用于許多情況下,包括在兩個大站間構(gòu)成主傳輸線路。有些電纜工作在765KV的電壓下,并負載幾百兆瓦的負荷。能承受更高電壓的電纜不久也會成為現(xiàn)實。</p><p>  同樣電壓等級的電纜與架空線相比,有著十分不同的特點,如:電纜的導(dǎo)體之間比架空線的導(dǎo)體間相距得更近些。電纜的電感和感抗比相應(yīng)規(guī)格架空線的要小。有些情況下,電纜的電阻可能在數(shù)值上大于它的感抗,導(dǎo)體間緊

45、密的空間和導(dǎo)體間存在的固態(tài)絕緣物體導(dǎo)致了每單位長度上電纜的分布電容比架空線大。結(jié)果是電纜的容抗較低。由于這些原因,對于電纜在使用短線解決問題時就必須小心。即使對于只有幾英里長的電纜,但為了獲得滿意的估算結(jié)果,往往要求用到π型或T型線路模型。</p><p>  絕緣電纜中的導(dǎo)體大部分是銅制的。在相同的單位英尺電阻下,銅導(dǎo)體比鋁導(dǎo)體細,這樣需要的絕緣材料的重量也就小。雖然目前市場上,銅比鋁貴,在絕大部分高壓電力電纜

46、的設(shè)計上,從絕緣造價的節(jié)約和減小直徑可增加靈活性的角度來說,采用銅比鋁更可取些。</p><p>  一般根據(jù)電力電纜的用途和造價選用相應(yīng)的絕緣材料。便攜式電纜一般用天然或人造橡膠絕緣,這種材料可以在低溫下重復(fù)彎曲。盡管如此,由于其化學(xué)結(jié)構(gòu)易快速變質(zhì),此材料不能用在高溫處。</p><p>  在高溫下電纜,應(yīng)以石棉和玻璃纖維做絕緣層。</p><p>  用來運輸

47、巨大電力的高壓電纜經(jīng)常用侵油紙做絕緣。其他材料如交聯(lián)聚乙烯也正在逐漸普遍被用來做絕緣層。</p><p>  電力電纜的制造商和用戶已能根據(jù)先進的數(shù)學(xué)方法和測試得出了電纜參數(shù)。表 —1給出了給定的設(shè)計條件下的電纜的線路參數(shù)。為了可靠地估算,滿足特殊設(shè)計要求所需要的電纜參數(shù)值,應(yīng)從制造商處獲得。</p><p>  表 1—1 一些典型

48、電纜的線路參數(shù)</p><p><b>  附錄B 外文文獻</b></p><p>  1)The Directional Protection Basis</p><p>  Early attempts to improve power-service reliability to loads remote from generation

49、 led to the dual-line concept. Of course, it is possible to build two lines to a load, and switch the load to whichever line remains energized after a disturbance. But better service continuity will be available if both

50、lines normally feed the load and only the faulted line is tripped when disturbances occur. Fig. 1-1 shows a single-generator, two-line, single-load system with breakers properly arranged to supply </p><p>  

51、The magnitude of the fault current through breakers Band D is the same , regardless of the location of the fault on the line terminal of breaker B or D. Therefore relay coordination must be based on characteristics other

52、 than a time delay that starts from the time of the fault. Observe that the direction of current flowing through either breaker B or D is a function of which line the fault is on. ~Thus for a fault on the line between A

53、and B, the current flows out of the load bus through breaker</p><p>  Relay coordination for the system shown in Fig. 1-1 can now be achieved by theinstallation of directional overcurrent time delay relays o

54、n breakers B and D. Breakers A and C can have nondirectional overcurrent time delay relays. They may also now have instananeous relays applied. The relays would be set as follows: The directional relays could beset with

55、no intentional time delay. They will have inherent time delay. The time delay over-current relays on breakers A and C would have current settin</p><p><b>  Fig. 1-1</b></p><p>  Dire

56、ction of current flow on an a. c. system is determined by comparing the current vector with some other reference vector, such as a voltage vector. In the system of Fig. 1-1 the reference voltage vector would be derived f

57、rom the voltages on the load bus. Direction of current or power flow cannot be determined instantaneously on a. c. systems whose lines and equipment contain reactance. This is apparent from the fact that when voltage exi

58、sts, the lagging current can be plus or minus or zero, d</p><p>  2)Introdution To Distance Protection</p><p>  Consider the problems involved if the power system shown in Fig.1-2A is equipped w

59、ith directional overcurrent time delay relays. Remember that a good protective relay system will coordinate correctly during any power system operating condition that can be produced by automatically switching the equipm

60、ent provided. Consider the case when generator 1 is the only generator supplying the system. The relays can be correctly set to coordinate for this condition. For a fault on the line between breaker</p><p>&

61、lt;b>  Fig. 1-2A</b></p><p>  At each breaker location the current flowing in the breaker and the voltage existing at the breaker are both available. If the voltage existing at the breaker (usually

62、the bus volt-age is used ) is divided by the current flowing through the breaker, the ohmic impedance to the fault will be determined. Since the distance to the fault is related to the electrical ohms, such a relay eleme

63、nt is frequently called a distance relay, or impedace relay. If such a relay element is provided with a tripping</p><p>  Usually, general network transmission lines are protected with step-type distance rel

64、ays. They are designed to close their contacts as fast as possible for faults within their reach. There are generally three zones that can be set to operate for three different distances. The application of the first tw

65、o zones is usually clear-cut. The first zone is set to trip as fast as possible for faults within its reach. It is normally set to cover 80% of the line it protects. When relays are set to cover </p><p>  Th

66、e characteristic of the distance protection with three stages is shown in Fig. 1-2B.Each of the relays has a directional impedance measuring facility.</p><p><b>  Fig. 1-2B</b></p><p&g

67、t;  The relay at A has a stage 1 impedance range which is set to operate (instantaneously) and trip the associsted breaker when a fault occurs within the first 80% of feeder 1 and only when the fault current is in the di

68、rection shown. The stage 2 setting of the same relay is set to include the whole of feeder 1 and (usually) the first 20%~30% of feeder 2 but tripping is initiated only after a short time delay. The stage 3 setting is set

69、 to cover faults in feeders 1 and 2 and possibly beyond with tri</p><p>  Protection as described leaves sections of the line at each end that are not cleared by high-speed relaying. Normally, faults in thes

70、e sections would be cleared by high speed at one end and by time delay from the other. On some power systems this may be satisfactory. On some other power systems it can lead to system instability, and it is neceassary t

71、o provide high-speed fault clearing through the line section.</p><p>  3)Basic Principles of Power-Line Carrier Directional Comparison Protection</p><p>  This system was the first application o

72、f carrier to protection and, although it has been mostly superseded by phase comparision and combinations of distance relays and carrier, it is still an important form of protection.</p><p>  The basic princ

73、iple of protection is the comparision of the direction of fault power at the two ends of the protected line by means of direction relays. Under through-fault conditions the direction of the fault power must be outwards a

74、t one end of the protected line. Under internal-fault conditions, fault power must be fed only into the line, either at both terminals or at one terminal. The detection of outward flowing power by a directional re-lay un

75、der external-fault conditions is used to init</p><p>  The usual arrangement is that a carrier signal is transmitted only during fault condition. This permits the use of relatively highpower signal level of

76、10W. Relays are required which detect the presence of the fault and which prepare the tripping circuit. The tripping circuit is completed if the local directional signal is received. The characteristics of the directiona

77、l relays are those chosen so that operation is obtained for power flow into the line and restrained for power flow out of the li</p><p>  In the early forms of this protection the starting relays were of the

78、 overcurrent type for all kinds of fault. The earth-fault settings could be made less than full load but the phase-fault settings were of the order of 200% maximum load current or more, in order to avoid the continuous t

79、ransmission of carrier under load conditions. With the development of transmission system, the diversity of load and fault currents became such that the maxi-mum loads and the minimum fault currents (with reduce</p>

80、;<p>  All the directional comparision systems use a single carrier frequency. The system is ba-sically single-end tripping, that is there must be a flow fault current to operate the starting relays at any given e

81、nd before that end can be tripped. With interconnected systems this is acceptable.</p><p>  4)Differential Protection</p><p>  Much of the apparatus used on a power system has small physical di

82、mensions when corn-pared to the length of general transmission-line circuits. Therefore, the communications be-tween the apparatus terminals may be made very economically and very reliably by the use of direct wire circu

83、it connections. This permits the application of a simple and usually very effective type of differential protection. In concept, the current entering the apparatus is simply compared against the current leaving t</p

84、><p>  The simplest application of differential relaying is shown in Fig. 1-3. Here one simple power conductor is protected by a differential relay. The relay itself usually consists of three coils, one of whi

85、ch is the coil that detects the difference current and initiates circuit tripping, it is called the operating coil and is designated by an 0 in the figure. The other two coils are restraint coils and are designated by R

86、in the figure. The restraint coils serve a practical purpose. They prevent op</p><p><b>  Fig. 1-3</b></p><p>  The power circuit of Fig. 1- 3is a simplification, and instead of bein

87、g a single conductor, a generator winding transformer winding, of other apparatus winding could be substituted. Note that if the powet circuit consisted of a reactor winding, for example, the differential scheme could no

88、t detect a short circuit between turns of the winding. Generally, differential relays protect three-phase apparatus, and the connection can become complex, although the theory remains relatively simple. Many m</p>

89、<p>  5)Rotor Earth-fault Protection For Generator</p><p>  Two methods are available for the detection earth faults in the rotor circuit. One method utilises a high resistance connected across the ro

90、tor circuit, the centre point of which is connected to earth through the coil of a sensitive relay (Fig. 1-4) This relay will detect earth faults over most of the rotor circuit. There is, however, a blind spot at the cen

91、tre point of the field winding which is at equipotential with the midpoint of the resistor under erath-fault condition. This blind spot can </p><p>  A second method utilies a small power pack connected to t

92、he positive pole of the field circuit, in series with which are connected the fault detecting relay and a high resistance (Fig. 1-5) A fault at any point in the filed system will pass a current of suffcient magnitude thr

93、ough the relay to cause opration. The filed winding earth-fault relays are usually instantaneous in operation and are connected for alarm only as there is no immediate to the set.</p><p>  Fig. 1-4 Generator

94、 field failure protection using</p><p>  sentitive relay (Diagram also shows simple rotor E/F scheme)</p><p>  It will be seen that with both of these schemes the earth return path is through th

95、e body of the rotor. Since, however, the contact between rotor and statoris through the bearing oil film which is non-(or intermitently) conductiong, it is essential to earth the rotor shaft by an additionnal erathed bru

96、sh, this also serves the essential purpose of discharging static electricity induced in the turbine rotor by steam fiction, thereby preventing the bearing surfaces from pitting.</p><p>  In some modern machi

97、nes the traditional current exciter exciter is replaced by alternator with a rotating armature, the filed winding of the main genretor being supplied through rectifiers carried on the rotor, and a`brushless`design is the

98、reby. The inaccessibility of the main d.c. filed circuit makes direct detection of rotor earth-faults impossible.</p><p>  Fig. 1-5 Rotor eevrth-fauit deteetion using negative-potential biasing device</p&

99、gt;<p>  The signgle erath-fault (or diode open circuit ) would produce little change in the level of excitation. A more sever interturn fault ( or diode short circuit ) would, in all probability, end to cause abn

100、ormal vibration of the set and a vibration detector is sometime employed to initiate deloading and tripping. the diodes are themselves protected by fuses and a fuse failure protection relay is normally included.</p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論