版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> “數(shù)與代數(shù)”教學(xué)的幾點(diǎn)體會(huì)</p><p> 數(shù)學(xué)是研究現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的科學(xué)。數(shù)學(xué)學(xué)習(xí)是中小學(xué)生增長(zhǎng)學(xué)習(xí)能力和創(chuàng)造能力的廣闊天地。代數(shù)知識(shí)是在算術(shù)知識(shí)的基礎(chǔ)上發(fā)展起來的,其特點(diǎn)是用字母表示數(shù),使數(shù)的概念及其運(yùn)算法則抽象化和公式化。初中一年級(jí)剛接觸代數(shù)時(shí),學(xué)生要經(jīng)歷由算術(shù)到代數(shù)的過渡,這里的主要標(biāo)志是由數(shù)過渡到字母表示數(shù),這是在小學(xué)的數(shù)的概念的基礎(chǔ)上更高一個(gè)層次上的抽象。字母是
2、代表數(shù)的,但它不代表某個(gè)具體的數(shù),這種一般與特殊的關(guān)系正是初一學(xué)生學(xué)習(xí)的困難所在。 </p><p> 數(shù)與代數(shù)的第一堂課,一般不講課本知識(shí),而是對(duì)學(xué)生初學(xué)代數(shù)給予一定的描述、指導(dǎo)。初一年級(jí)學(xué)生學(xué)習(xí)基礎(chǔ)較薄弱,學(xué)習(xí)能力還不夠強(qiáng).通過小學(xué)四則運(yùn)算的學(xué)習(xí),頭腦中已形成相關(guān)計(jì)算規(guī)律,知道數(shù)都是指正整數(shù)、正分?jǐn)?shù)和零等具體的數(shù),因此學(xué)生可能會(huì)用小學(xué)的思維定勢(shì)去認(rèn)知、理解有理數(shù)的加法.但是在初中數(shù)已經(jīng)擴(kuò)大到有理數(shù),出現(xiàn)了負(fù)
3、數(shù),學(xué)生對(duì)于數(shù)的概念,在小學(xué)數(shù)學(xué)中雖已有過兩次擴(kuò)展,一次是引進(jìn)數(shù)0,一次是引進(jìn)分?jǐn)?shù)(指正分?jǐn)?shù))。但學(xué)生對(duì)數(shù)的概念為什么需要擴(kuò)展,體會(huì)不深。而到了初一要引進(jìn)的新數(shù)———負(fù)數(shù),與學(xué)生日常生活上的聯(lián)系表面上看不很密切。他們習(xí)慣于“升高”、“下降”的這種說法,而現(xiàn)在要把“下降5米”說成“升高負(fù)5米”是很不習(xí)慣的,為什么要這樣說,一時(shí)更不易理解。所以使學(xué)生認(rèn)識(shí)引進(jìn)負(fù)數(shù)的必要是初一數(shù)學(xué)中首先遇到的一個(gè)難點(diǎn)。 </p><p>
4、; 我們?cè)谡揭胴?fù)數(shù)這一概念前,先把小學(xué)數(shù)學(xué)中的數(shù)的知識(shí)作一次系統(tǒng)的整理,使學(xué)生注意到數(shù)的概念是為解決實(shí)際問題的需要而逐漸發(fā)展的,也是由原有的數(shù)集與解決實(shí)際問題的矛盾而引發(fā)新數(shù)集的擴(kuò)展。即自然數(shù)集添進(jìn)數(shù)0→擴(kuò)大自然數(shù)集(非負(fù)整數(shù)集)添進(jìn)正分?jǐn)?shù)→算術(shù)數(shù)集(非負(fù)有理數(shù)集)添進(jìn)負(fù)整數(shù)、負(fù)分?jǐn)?shù)→有理數(shù)集……。這樣就為數(shù)系的再一次擴(kuò)充作好準(zhǔn)備。 </p><p> 正式引入負(fù)數(shù)概念時(shí),可以這樣處理,例:在小學(xué)對(duì)運(yùn)進(jìn)6
5、0噸與運(yùn)出40噸,增產(chǎn)300千克與減產(chǎn)100千克的意義已很明確了,怎樣用一個(gè)簡(jiǎn)單的數(shù)把它們的意義全面表示出來呢?從而激發(fā)學(xué)生的求知欲。再讓學(xué)生自己舉例說明這種相反意義的量在生活中是經(jīng)常地接觸到的,而這種量除了要用小學(xué)學(xué)過的算術(shù)數(shù)表示外,還要用一個(gè)語句來說明它們的相反的意義。如果取一個(gè)量為基準(zhǔn)即“0”,并規(guī)定其中一種意義的量為“正”的量,與之相反意義的量就為“負(fù)”的量。用“+”表示正,用“-”表示負(fù)。 </p><p&
6、gt; 這樣,逐步引進(jìn)正、負(fù)數(shù)的概念,將會(huì)有助于學(xué)生體會(huì)引進(jìn)新數(shù)的必要性。從而在心理產(chǎn)生認(rèn)同,進(jìn)而順利地把數(shù)的范疇從小學(xué)的算術(shù)數(shù)擴(kuò)展到初一的有理數(shù),使學(xué)生不至產(chǎn)生巨大的跳躍感。 </p><p> 初一的四則運(yùn)算是源于小學(xué)數(shù)學(xué)的非負(fù)有理數(shù)運(yùn)算而發(fā)展到有理數(shù)的運(yùn)算,不僅要計(jì)算絕對(duì)值,還要首先確定運(yùn)算符號(hào),這一點(diǎn)學(xué)生開始很不適應(yīng)。在負(fù)數(shù)的“參算”下往往出現(xiàn)計(jì)算上的錯(cuò)誤,有理數(shù)的混合運(yùn)算結(jié)果的準(zhǔn)確率較低,所以,特別
7、需要加強(qiáng)練習(xí)。 </p><p> 另外,對(duì)于運(yùn)算結(jié)果來說,計(jì)算的結(jié)果也不再像小學(xué)那樣唯一了。如|a|,其結(jié)果就應(yīng)分三種情況討論。這一變化,對(duì)于初一學(xué)生來說是比較難接受的,代數(shù)式的運(yùn)算對(duì)他們而言是個(gè)全新的問題,要正確解決這一難點(diǎn),必須非常注重,要使學(xué)生在正確理解有理數(shù)概念的基礎(chǔ)上,掌握有理數(shù)的運(yùn)算法則。對(duì)運(yùn)算法則理解越深,運(yùn)算才能掌握得越好。但是,初一學(xué)生的數(shù)學(xué)基礎(chǔ)尚。 </p><p>
8、; 不能透徹理解這些運(yùn)算法則,所以在處理上要注意設(shè)置適當(dāng)?shù)奶荻?,逐步加深。有理?shù)的四則運(yùn)算最終要?dú)w結(jié)為非負(fù)數(shù)的運(yùn)算,因此“絕對(duì)值”概念應(yīng)該是我們教學(xué)中必須抓住的關(guān)鍵點(diǎn)。而定義絕對(duì)值又要用到“互為相反數(shù)”的概念,“數(shù)軸”又是講授這兩個(gè)概念的基礎(chǔ),一定要注意數(shù)形結(jié)合,加強(qiáng)直觀性,不能急于求成。學(xué)生正確掌握、熟練運(yùn)用絕對(duì)值這一概念,是要有一個(gè)過程的。在結(jié)合實(shí)例利用數(shù)軸來說明絕對(duì)值概念后,還得在練習(xí)中逐步加深認(rèn)識(shí)、進(jìn)行鞏固。 </p&g
9、t;<p> 進(jìn)入初中的學(xué)生年齡大都是11至12歲,這個(gè)年齡段學(xué)生的思維正由形象思維向抽象思維過渡。思維的不穩(wěn)定性以及思維模式的尚未形成,決定了列方程解應(yīng)用題的學(xué)習(xí)將是初一學(xué)生面臨的一個(gè)難度非常大的坎。列方程解應(yīng)用題的教學(xué)往往是費(fèi)力不小,效果不佳。因?yàn)閷W(xué)生解題時(shí)只習(xí)慣小學(xué)的思維套用公式,屬定勢(shì)思維,不善于分析、轉(zhuǎn)化和作進(jìn)一步的深入思考,思路狹窄、呆滯,題目稍有變化就束手無策。初一學(xué)生在解應(yīng)用題時(shí),主要存在三個(gè)方面的困難:
10、(1)抓不住相等關(guān)系;(2)找出相等關(guān)系后不會(huì)列方程;(3)習(xí)慣用算術(shù)解法,對(duì)用代數(shù)方法分析應(yīng)用題不適應(yīng),不知道要抓相等關(guān)系。 </p><p> 這頭一個(gè)方面是主要的,解決了它,另兩個(gè)方面就都好解決了。所以,小學(xué)數(shù)學(xué)第八冊(cè)列方程解應(yīng)用題教學(xué)時(shí),一要使學(xué)生掌握算術(shù)法和代數(shù)法的異同點(diǎn),并講清列方程解應(yīng)用題的思路;二要有針對(duì)性地讓學(xué)生加強(qiáng)把實(shí)際中的數(shù)量關(guān)系改寫成代數(shù)式的訓(xùn)練,這樣對(duì)小學(xué)生逆向思維有好處,使較復(fù)雜的應(yīng)
11、用題化難為易。初一講授列方程解應(yīng)用題教學(xué)時(shí),要重視知識(shí)發(fā)生過程。因?yàn)閿?shù)學(xué)本身就是一種思維活動(dòng),教學(xué)中要使學(xué)生盡可能參與進(jìn)去,從而形成和發(fā)展具有思維特點(diǎn)的智力結(jié)構(gòu)。 </p><p> 要讓學(xué)生始終參加審題、分析題意、列方程、解方程等活動(dòng),了解列方程解應(yīng)用題的實(shí)際意義和解題方法及優(yōu)越性,這其中審題應(yīng)是最為關(guān)鍵的一環(huán)。要教會(huì)學(xué)生通過閱讀題目、理解題意、進(jìn)而找出等量關(guān)系、列出方程解決問題的方法,使之形成“觀察———分
12、析———?dú)w納”的良好習(xí)慣,這對(duì)于整個(gè)數(shù)學(xué)的學(xué)習(xí)都是至關(guān)重要的。另外,在教學(xué)中還要告訴學(xué)生,有些問題用算術(shù)法解決是不方便的,只有用代數(shù)解法。對(duì)于某些典型題目在幫助學(xué)生用代數(shù)方法解出后,同時(shí)與算術(shù)解法作比較,使學(xué)生有個(gè)更清晰的認(rèn)識(shí),從而逐漸摒棄用算術(shù)解法做應(yīng)用題的思維習(xí)慣。 </p><p> 在初中數(shù)學(xué)學(xué)習(xí)中,從數(shù)學(xué)思想方法來看,教材中體現(xiàn)的將實(shí)際問題抽象為數(shù)學(xué)問題,利用數(shù)學(xué)問題解決實(shí)際問題的模型化思想;許多性質(zhì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)與代數(shù)課堂教學(xué)設(shè)計(jì)
- 《線性代數(shù)》教學(xué)中的幾點(diǎn)思考
- 小學(xué)寫字教學(xué)的幾點(diǎn)體會(huì)
- 提高“高等代數(shù)”教學(xué)質(zhì)量的幾點(diǎn)措施
- 淺談信號(hào)與系統(tǒng)課程教學(xué)的幾點(diǎn)體會(huì)
- 數(shù)與代數(shù)習(xí)題
- 小學(xué)《數(shù)與代數(shù)》
- 5770.小學(xué)“數(shù)與代數(shù)”教學(xué)的意義建構(gòu)研究
- 數(shù)與代數(shù)應(yīng)用問題的內(nèi)容主線和教學(xué)建議
- 數(shù)與代數(shù)數(shù)的認(rèn)識(shí)
- 中職數(shù)學(xué)教學(xué)的幾點(diǎn)體會(huì)
- 當(dāng)堂達(dá)標(biāo)教學(xué)的幾點(diǎn)體會(huì)
- 淺談初中數(shù)學(xué)教學(xué)的幾點(diǎn)體會(huì)
- 高職英語教學(xué)的幾點(diǎn)體會(huì)
- 關(guān)于《探究式教學(xué)》的幾點(diǎn)體會(huì)
- 淺談初中數(shù)學(xué)教學(xué)的幾點(diǎn)體會(huì)
- 《機(jī)械基礎(chǔ)》課程教學(xué)的幾點(diǎn)體會(huì)
- 淺談《普通邏輯》教學(xué)的幾點(diǎn)體會(huì)
- 《數(shù)與代數(shù)領(lǐng)域中數(shù)的概念教學(xué)的有效性研究》課題方案
- 二代數(shù)與結(jié)合代數(shù).pdf
評(píng)論
0/150
提交評(píng)論