版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、分子力學(xué):基本原理及應(yīng)用簡介,邵強(qiáng)藥物發(fā)現(xiàn)與設(shè)計(jì)中心中科院上海藥物所2015.09.09,1. 分子模擬簡介,分子模擬法是用計(jì)算機(jī)以原子水平的分子模型來模擬分子的結(jié)構(gòu)與行為,進(jìn)而模擬分子體系的各種物理與化學(xué)性質(zhì)。分子模擬不但可以模擬分子的靜態(tài)結(jié)構(gòu),也可以模擬分子的動態(tài)行為(分子鏈的構(gòu)象、分子的吸附、分子的擴(kuò)散以及相互作用)。,原子結(jié)構(gòu),,模擬電子云,薛定諤方程,能量性質(zhì),化學(xué)鍵等信息,量子化學(xué)計(jì)算:一般處理幾個(gè)到幾十個(gè)原子常見
2、軟件:GAUSSIAN, NWCHEM…密度泛函(DFT):可以算到上百個(gè)原子常見軟件:VASP,量子力學(xué)模擬:ab initio,實(shí)際上,許多希望用分子模擬方法解決的問題,對于量子力學(xué)方法來講,體系過大而無法處理。因?yàn)榱孔恿W(xué)面對體系中的電子,即便是忽略一些電子的半經(jīng)驗(yàn)方法仍然要處理大量的粒子,因而對大的體系難以實(shí)現(xiàn)。,分子力學(xué)方法,分子力學(xué)從本質(zhì)上說是能量最小值方法,即在原子間相互作用勢的作用下, 通過改變粒子分布的幾
3、何位型, 以能量最小為判據(jù), 從而獲得體系的最佳結(jié)構(gòu)。,分子力學(xué)忽略電子的運(yùn)動,只計(jì)算與原子核位置相關(guān)的體系能量。分子力學(xué)認(rèn)為分子體系的勢能函數(shù)是分子體系中原子位置的函數(shù),將分子體系作為在勢能棉上運(yùn)動的力學(xué)體系來處理,求解的是經(jīng)典力學(xué)方程,而不是量子力學(xué)的薛定諤方程。,分子力學(xué)可以求得分子的平衡結(jié)構(gòu)和熱力學(xué)性質(zhì),但不能得到分子體系與電子結(jié)構(gòu)相關(guān)的其他性質(zhì)。,Karplus、Levitt、Warshel工作的突破意義在于設(shè)法讓量子力學(xué)和分
4、子力學(xué)結(jié)合在化學(xué)過程的建模之中,實(shí)現(xiàn)復(fù)雜化學(xué)系統(tǒng)的多尺度模擬。,,,量子力學(xué)/分子力學(xué)聯(lián)用方法(QM/MM),分子動力學(xué)模擬,分子力學(xué)生成分子力場,蒙特卡洛模擬,分子對接,人類認(rèn)識客觀世界是通過實(shí)驗(yàn)方法與理 論方法來實(shí)現(xiàn)的。而計(jì)算機(jī)模擬被稱為是人類認(rèn)識客觀世界的第三種方法。,Super Computer,分子模擬的意義,實(shí)驗(yàn)方法研究生物體系的動態(tài)運(yùn)動,X射線晶體分析(X-ray crystallography) 只能提供
5、蛋白質(zhì)的靜態(tài)結(jié)構(gòu)時(shí)間分辨X射線方法( Time-resolved X-ray) 對研究體系有很強(qiáng)的限制性核磁共振(NMR) 目前只能應(yīng)用于較小的體系熒光共振能量轉(zhuǎn)移技術(shù)(FRET),分子模擬時(shí)間尺度,2. 分子力學(xué)簡介,Born-Oppenheimer近似下對勢能面的經(jīng)驗(yàn)性擬合。量子力學(xué)中的薛定諤方程 (非相對論和無時(shí)間依賴的情況下):,分子力學(xué)(Molecular Mechanics) ,又叫力場
6、方法(force field method),是基于經(jīng)典力學(xué)方程的計(jì)算分子的平衡結(jié)構(gòu)和能量的方法。,基本假設(shè):,體系的哈密頓算符,與原子核(R)和電子(r)位置相關(guān)的波函數(shù),基于Born-Oppenheimer近似,其物理模型可描述為:原子核的質(zhì)量是電子質(zhì)量的103~105倍,電子速度遠(yuǎn)遠(yuǎn)大于原子核的運(yùn)動速度,每當(dāng)核的分布形式發(fā)生微小變更,電子立刻調(diào)整其運(yùn)動狀態(tài)以適應(yīng)新的核場。這意味著,在任一確定的核分布形式下,電子都有相應(yīng)的運(yùn)動狀態(tài)
7、;同時(shí)核間的相對運(yùn)動可視為所有電子運(yùn)動的平均結(jié)果。所以電子的波函數(shù)只依賴于原子核的位置,而不是他們的動能。于是這個(gè)近似認(rèn)為,電子的運(yùn)動與原子核的運(yùn)動可以分開處理,可以將上式分解為,,電子運(yùn)動的波函數(shù),核運(yùn)動的波函數(shù),①,②,電子運(yùn)動方程:,核運(yùn)動方程:,,方程①中的能量Eel(勢能面)僅僅是原子核坐標(biāo)有關(guān)。相應(yīng)的,方程②所表示的為在核勢能面E(R)上的核運(yùn)動方程。直接求解方程①,采用的是從頭算或者是半經(jīng)驗(yàn),這樣的量化計(jì)算都是把電子的波
8、函數(shù)和能量處理成原子核坐標(biāo)的函數(shù)。由于量子化學(xué)求解電子波函數(shù)和勢能面耗時(shí)巨大,常常將勢能面進(jìn)行經(jīng)驗(yàn)性的擬合,成為力場,由此構(gòu)成分子力學(xué)的基礎(chǔ)。將方程②用牛頓運(yùn)動方程代替,勢能面采用力場擬合,就構(gòu)成了分子動力學(xué)的基礎(chǔ)。,①,②,電子運(yùn)動方程:,核運(yùn)動方程:,,分子力場是分子力學(xué)的核心。分子力學(xué)的基本理論就是一個(gè)分子力場由分子內(nèi)相互作用和分子間相互作用兩大部分構(gòu)成,即力場的勢能包括成鍵和非鍵相互作用,所有的勢能的總和即為分子的構(gòu)象能。,簡
9、單分子力場,分子力學(xué)的基本思想-1930, D. H. Andrews,在分子內(nèi)部,化學(xué)鍵都有“自然”的鍵長值和鍵角值。分子要調(diào)整它的幾何形狀(構(gòu)象),以使其鍵長值和鍵角值盡可能接近自然值,同時(shí)也使非鍵作用處于最小的狀態(tài),給出原子核位置的最佳排布。,分子的經(jīng)典力學(xué)模型 - 1946,T. L. Hill,T.L.Hill提出用van der Waals作用能和鍵長、鍵角的變形能來計(jì)算分子的能量,以優(yōu)化分子的空間構(gòu)型。,Hill指出:分子
10、內(nèi)部的空間作用是眾所周知的:1)基團(tuán)或原子之間靠近時(shí)則相互排斥; 2)為了減少這種作用,基團(tuán)或原子就趨于相互離開,但是這將使鍵長伸長或鍵角發(fā)生彎曲,又引起了相應(yīng)的能量升高。最后的構(gòu)型將是這兩種力折衷的結(jié)果,并且是能量最低的構(gòu)型。,分子力學(xué)的發(fā)展,雖然分子力學(xué)的思想和方法在40年代就建立起來了,但是直到50年代以后,隨著電子計(jì)算機(jī)的發(fā)展,用分子力學(xué)來確定和理解分子的結(jié)構(gòu)和性質(zhì)的研究才越來越多。直到這時(shí),才可以說分子力學(xué)已成為結(jié)構(gòu)化學(xué)研究的
11、重要方法之一。,近幾年來,隨著現(xiàn)代技術(shù)的發(fā)展和應(yīng)用,特別是計(jì)算機(jī)技術(shù)的發(fā)展,分子力學(xué)方法已不僅能處理一般的中小分子,也不僅主要應(yīng)用于有機(jī)化學(xué)領(lǐng)域,而且能處理大分子體系。在其他的一些領(lǐng)域,如生物化學(xué)、藥物設(shè)計(jì)、配位化學(xué)中,都有了廣泛的應(yīng)用。,目前,分子力學(xué)是模擬蛋白質(zhì)、核酸等生物大分子結(jié)構(gòu)和性質(zhì)以及配體-受體相互作用的常用方法。隨著分子圖形學(xué)的不斷發(fā)展,分子力學(xué)已經(jīng)廣泛應(yīng)用于分子模型設(shè)計(jì)。當(dāng)今優(yōu)秀的分子設(shè)計(jì)程序都將分子力學(xué)作為初始模型優(yōu)化
12、的主要方法,分子模型的構(gòu)建也是分子力學(xué)為主,分子力學(xué)方法是計(jì)算機(jī)輔助分子設(shè)計(jì)中常用的方法,特別是在有無設(shè)計(jì)中,已離不開分子力學(xué)計(jì)算和模擬方法。應(yīng)用分子力學(xué)方法,可以迅速得到分子的低能構(gòu)象,通過構(gòu)象分析可以獲得合理的藥效構(gòu)象和藥效基團(tuán)。如已知受體的三維結(jié)構(gòu),可以用分析力學(xué)模擬藥物與受體的相互作用。在分子的定量結(jié)構(gòu)活性關(guān)系研究中,也需要用分子力學(xué)方法進(jìn)行計(jì)算。,由于分子力學(xué)是經(jīng)驗(yàn)的計(jì)算方法,不同的分子力學(xué)方法會采用不同的勢能函數(shù)(Pote
13、ntial Energy Function,PEF)表達(dá)式,而且力場參數(shù)值也會不同。一般將分子的PEF分解成五部分:,鍵伸縮能,鍵彎曲能,二面角扭轉(zhuǎn)能,范德華作用能,靜電作用能,,然后,將表達(dá)式中的能量使用不同的經(jīng)驗(yàn)公式代替,這些經(jīng)驗(yàn)公式就是力場。針對材料分子的力場主要有DREIDING, MM2,UFF,COMPASS力場等,針對蛋白質(zhì)和生物大分子的力場主要有AMBER,OPLA,VFF,CHARMM,GROMOSD力場等。,
14、鍵伸縮能 Bond Stretching——諧振子函數(shù),鍵伸縮力常數(shù),鍵長,平衡鍵長,莫斯函數(shù)(Morse Function),TRIPOS, Cherm-X, CHARMM和AMBER采用諧振子函數(shù)形式CVFF, DRIEDING和UFF既支持莫斯函數(shù)也支持諧振子模型MM2和MMX用二階泰勒展開的莫斯函數(shù)MM3, CFF和MMFF94用三階泰勒展開的莫斯函數(shù),含非諧項(xiàng)的函數(shù): V = (k/2)( r-r0)2[1
15、-k1’ (r-r0)-k2”(r-r0)2-k3’”(r-r0)3],鍵角彎折能 Angle Bending——諧振子模型,,,,,,,鍵角彎折力常數(shù),鍵角,平衡鍵角,諧振子模型在偏離平衡位置不大的情況下(10°以內(nèi))可以取得很好的結(jié)果。 采用諧振子的力場包括:TRIPOS, CHEM-X, CHARMM, AMBER以及CVFF等,二面角扭轉(zhuǎn)能 Torsion Rotation,為勢壘高度(barrier height
16、),定量描述了二面角旋轉(zhuǎn)的難易程度; N 為多重度(multiplicity),指鍵從0°到360°旋轉(zhuǎn)過程中能量極小點(diǎn)的個(gè)數(shù); ? 為相因子(phase factor),指單鍵旋轉(zhuǎn)通過能量極小值時(shí)二面角的數(shù)值。 ω為扭轉(zhuǎn)角度(torsion angle),大部分力場如AMBER, TRIPOS, CHEM-X, CHARMM, COSMIC, DREIDING和CVFF采用較簡單的勢函數(shù)形式
17、第二代力場如MM2, MM3, CFF及MMFF94采用傅里葉級數(shù)形式,由于二面角的扭轉(zhuǎn)對總能量的貢獻(xiàn)小于鍵長和鍵角的貢獻(xiàn),一般情況下二面角的改變要比鍵長和鍵角的變化自由得多。因此在一些處理大分子的力場中常保持鍵長、鍵角不變,只考慮二面角及其他的作用而優(yōu)化整個(gè)分子的構(gòu)象和能量。,交叉相互作用項(xiàng) Crossing Terms鍵伸縮-鍵伸縮相互作用鍵伸縮-鍵角彎折相互作用鍵伸縮-二面角旋轉(zhuǎn)相互作用鍵角彎折-鍵角彎折相互作用鍵角彎
18、折-二面角旋轉(zhuǎn)相互作用應(yīng)用TRIPOS, CHEM-X, DREIDING, AMBER, UFF和COSMIC力場中沒有相互作用項(xiàng)MM2和MMFF94只支持鍵伸縮-鍵角彎折相互作用項(xiàng)MM3力場支持鍵伸縮-鍵角彎折、鍵角彎折-鍵角彎折、鍵伸縮-二面角旋轉(zhuǎn)相互作用項(xiàng)CVFF和CFF91都支持,范德華相互作用能——Lennard-Jones勢函數(shù),r為原子對間的距離; ε 為勢阱深度,ε為勢能參數(shù),因原子的種類各異。 正的部分為
19、排斥勢,負(fù)的部分為吸引勢 n取6,m取12時(shí),叫做LJ 6-12勢函數(shù),用于AMBER, CVFF, CHARMM, DREIDING, UFF以及TRIPOS等力場,,ε,靜電相互作用 Electrostatic Contributions 點(diǎn)電荷法:通過經(jīng)驗(yàn)規(guī)則或者量化計(jì)算確定每個(gè)原子上的部分電荷(partial charge),兩個(gè)原子之間的靜電作用用庫侖公式來計(jì)算。偶極矩法:根據(jù)某些規(guī)則計(jì)算出每個(gè)化學(xué)鍵的偶極矩,通過
20、計(jì)算偶極-偶極相互作用來描述靜電相互作用。,是分子間或分子內(nèi)偶極-偶極相互作用的能量 和 是兩個(gè)偶極的偶極矩 是兩個(gè)偶極矩間的角度 和 是連接兩個(gè)偶極向量間的夾角,兩種方法在處理有機(jī)小分子體系的時(shí)候效率相似,但是當(dāng)用來處理帶電生物大分子體系時(shí),偶極矩方法顯得過于耗時(shí)。MM2, MM3和MMX用鍵偶極矩法計(jì)算靜電相互作用其它力場采用點(diǎn)電荷方法計(jì)算點(diǎn)電荷方法的問題在于如何
21、把電荷分配到原子上量子化學(xué)計(jì)算法電荷可以由多極矩、熱力學(xué)性質(zhì)、靜電勢擬合得來經(jīng)驗(yàn)規(guī)則法,點(diǎn)電荷法vs 偶極矩法,分子的力場形式-氫鍵,,能量是相對的,由不同的方法計(jì)算得到的能量的絕對值是毫無意義的。只有當(dāng)它與同體系的其他構(gòu)象計(jì)算得到的能量相比較時(shí)才有意義。,比較不同程序計(jì)算得到的能量值,用同一種程序時(shí),比較不同分子的能量值,無意義,無意義,力場參數(shù)化,分子力學(xué)勢能函數(shù)是有一系列的可調(diào)參數(shù)組成的。對可調(diào)參數(shù)進(jìn)行優(yōu)化,使分子力學(xué)的計(jì)算
22、值最符合分子的某些性質(zhì)的實(shí)驗(yàn)數(shù)值,得到一套力場的優(yōu)化參數(shù),再使用這套參數(shù)去預(yù)測相同原子類型的其他分子的結(jié)構(gòu)和性質(zhì)。分子力學(xué)計(jì)算結(jié)果的精確性除了與力場勢能函數(shù)表達(dá)式有關(guān)外,還與力場參數(shù)的數(shù)值密切相關(guān)。有效的力場勢能函數(shù)和正確的力場函數(shù)可使分子力學(xué)計(jì)算達(dá)到很高的精度。一個(gè)好的力場不僅能重現(xiàn)已被研究過的實(shí)驗(yàn)觀察結(jié)果,而且能有一定的廣泛性,能用于解決未被實(shí)驗(yàn)測定過的分子的結(jié)構(gòu)和性質(zhì)。對于不同的力場不僅力場參數(shù)不同,函數(shù)形式也可能不同。因此,
23、在將一個(gè)力場中的參數(shù)應(yīng)用于另一個(gè)力場時(shí)應(yīng)十分小心。,實(shí)驗(yàn)數(shù)據(jù)擬合力場,參數(shù)化的過程要在大量的熱力學(xué)、光譜學(xué)實(shí)驗(yàn)數(shù)據(jù)的基礎(chǔ)上進(jìn)行,有時(shí)也需要由量子化學(xué)計(jì)算的結(jié)果提供數(shù)據(jù)。傳統(tǒng)的 分子力學(xué)參數(shù)化方法是通過擬合實(shí)驗(yàn)數(shù)據(jù)(幾何構(gòu)型、構(gòu)象能、生成熱、光譜數(shù)據(jù)等)來優(yōu)化參數(shù)。 ---- 鍵伸縮振動常數(shù)可直接由振動光譜獲得。 ---- 平衡鍵長、平衡鍵角和角彎曲常數(shù)可由X射線衍射、中子衍射、電子衍射等方法測定。 ---- 扭轉(zhuǎn)力常
24、數(shù)來自于NMR譜帶和弛豫時(shí)間。 ---- 構(gòu)象能可從光譜和熱化學(xué)數(shù)據(jù)得到。 ---- 非鍵參數(shù)可從晶格參數(shù)和液體的物理性質(zhì)數(shù)據(jù)獲得。,量化計(jì)算擬合力場,在分子力場發(fā)展的過程中面臨的最大困難在于實(shí)驗(yàn)數(shù)據(jù)的缺乏。這樣就會在位能函數(shù)的參數(shù)化時(shí)遇到麻煩。原則上可以用量子化學(xué)從頭計(jì)算法來確定力場參數(shù)。過去僅僅是利用了坐標(biāo)和能量的關(guān)系。很顯然,要準(zhǔn)確地?cái)M合位能面,就需要有足夠多的計(jì)算點(diǎn)分布在整個(gè)位能面上。結(jié)果就會使得計(jì)算量變得非常大。
25、但我們注意到從頭計(jì)算不僅可以得到能量,原子電荷,還可以得到能量對坐標(biāo)的一階導(dǎo)數(shù)(即原子所受的力),能量對坐標(biāo)的二階導(dǎo)數(shù)(Hessian矩陣元)。這些結(jié)果和構(gòu)成力場的基本要素—力常數(shù),電荷等是密切相關(guān)的。這樣我們通過一次計(jì)算就可以得到用于擬合位能面的多個(gè)數(shù)據(jù)。,常見的力場及程序,1. MM形態(tài)力場(Allinger等 1989)按發(fā)展先后順序有MM、MM2、MM3、MM4等特點(diǎn):將原子細(xì)分,如C原子分為sp3、sp2、sp、酮基碳、環(huán)
26、丙烷碳、碳自由基、碳陽離子等在MM形式的力場中仔細(xì)考慮了許多交叉作用項(xiàng),其結(jié)果往往優(yōu)于其他形式的力場。相對的,其力場形式較為復(fù)雜,比較不易程序化,計(jì)算耗時(shí)。MM力場適用于各種有機(jī)化合物、自由基、離子??傻玫骄_的構(gòu)型、構(gòu)型能、各種熱力學(xué)性質(zhì)、振動光譜、晶體能量等。,,2. AMBER力場(加州大學(xué)Peter Kollman等 1984)特點(diǎn):力場參數(shù)全部來自計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果的對比。AMBER力場適用于較小的蛋白質(zhì)、核酸、多糖等
27、生化分子??傻玫胶侠淼臍鈶B(tài)分子幾何結(jié)構(gòu)、構(gòu)型能、振動頻率及溶劑化自由能。,,3. CHARMM力場 (哈佛大學(xué)Martin Karplus等, 1983)力場參數(shù)除來自計(jì)算結(jié)果與實(shí)驗(yàn)值的對比外,并引用了大量地量子計(jì)算結(jié)果為依據(jù)。此力場適用于小的有機(jī)分子、溶液、聚合物、生化分子等。特點(diǎn):除有機(jī)金屬分子外,此力場可得到與實(shí)驗(yàn)結(jié)果相近的結(jié)構(gòu)、作用能、構(gòu)型能、轉(zhuǎn)動能障、振動頻率、自由能和許多與時(shí)間相關(guān)的物理量。,4. CVFF力場 (Con
28、sistent Valence Force Field)Dauber-Osguthorpe group, 1988適用范圍包括有機(jī)小分子和蛋白質(zhì)體系擴(kuò)展后可用于某些無機(jī)體系的模擬,如硅酸鹽、鋁硅酸鹽、磷鋁化合物主要用于預(yù)測分子的結(jié)構(gòu)和結(jié)合自由能,5 第二代力場 (DFF91 、CFF95 、PCFF 、MMFF93)特點(diǎn):形式上較上述經(jīng)典力場復(fù)雜,需要大量地力常數(shù)。其力常數(shù)的推導(dǎo)除引用大量的實(shí)驗(yàn)數(shù)據(jù)外,還參照了精確的量子計(jì)算結(jié)
29、果。能精確計(jì)算分子的各種性質(zhì)、結(jié)構(gòu)、光譜、熱力學(xué)性質(zhì)、晶體特性等。適用于有機(jī)分子和不含過渡金屬元素的分子系統(tǒng)。,AMBER 蛋白質(zhì)力場列表,AMBER FF94,Connell et al., 1995,AMBER FF96,Kollman et al., 1995,修正了關(guān)于二面角的描述,AMBER FF99,Wang et al., 2000,修改二面角參數(shù),AMBER FF99SB,Hornak et al., 2006,修改主鏈
30、二面角參數(shù),AMBER FF02,F(xiàn)F02ER,Cieplak et al., 2001,Wang et al. 2006 極化力場,AMBER FF03,Duan et al., 2003,量子力學(xué)計(jì)算獲得電荷值,采用連續(xù)電介模型處理溶劑極化效應(yīng),修正二面角參數(shù),AMBER FF99SB-ILDN,Lindorff-Larsen et al., 2010,修正支鏈二面角參數(shù),AMBER FF99SB-NMR,Li et al., 20
31、10,修正二面角參數(shù),AMBER FF14SB、FF14SBonlysc,Maier et al.,修正二面角參數(shù),分子力場的選擇,蛋白質(zhì)分子的模擬:首選AMBER力場、 CHARMM力場、 GROMCS力場,也可用CFF力場、CVFF力場和MMFF94力場核酸分子的模擬:采用AMBER力場、CHARMM力場、GROMCS力場、 MMFF94力場或用戶自定義的力場小分子-蛋白質(zhì)復(fù)合物體系的模擬:首選CHARMM力場和MMFF94
32、力場,也可用CVFF力場和CFF力場高分子的模擬:首選COMPASS力場,也可用PCFF力場和CFF95力場,力場所存在的問題兩個(gè)相互作用原子間的誘導(dǎo)偶極的作用會受到其它原子的影響;非鍵作用勢中假定原子為球形,實(shí)際上非鍵作用受原子形狀影響,還需考慮孤對電子;諧振勢函數(shù)不能精確擬合實(shí)驗(yàn)數(shù)據(jù)對于靜電作用的處理過于簡化。,力場的發(fā)展趨勢考慮原子極化率取用高次項(xiàng)發(fā)展含金屬的力場,E,分子力學(xué)的應(yīng)用,分子力學(xué)最重要的內(nèi)容是根
33、據(jù)適合的力場計(jì)算分子各種可能構(gòu)象的勢能,勢能最低的構(gòu)象為最為穩(wěn)定的構(gòu)象。尋找勢能最低點(diǎn)的過程稱為能量最小化,所得到的構(gòu)象稱為幾何優(yōu)化構(gòu)象。分子的幾何優(yōu)化構(gòu)象是計(jì)算分子性能的基礎(chǔ)。,局部極小值:鞍點(diǎn),r,分子結(jié)構(gòu)的優(yōu)化,分子結(jié)構(gòu)的優(yōu)化 用于描述分子初始結(jié)構(gòu)的原子坐標(biāo)可以使用分子內(nèi)坐標(biāo)、直角坐標(biāo)或晶體坐標(biāo)。從晶體數(shù)據(jù)得到初始結(jié)構(gòu)數(shù)據(jù)往往是比較方便的,若沒有晶體數(shù)據(jù),則可用Dreiding模型來估計(jì)。,分子結(jié)構(gòu)的優(yōu)化
34、 除了初始坐標(biāo)外,還要提供分子中所有原子的聯(lián)接關(guān)系,以便自動搜索任何兩個(gè)原子之間的作用,按不同的聯(lián)接關(guān)系以不同的能量函數(shù)形式計(jì)算對總能量的貢獻(xiàn)。計(jì)算中所用的能量參數(shù)大部分已在程序中準(zhǔn)備好,有時(shí),要對某些參數(shù)進(jìn)行修改或增補(bǔ)。,輸入坐標(biāo)及連接關(guān)系,力場選擇、作用項(xiàng)、參數(shù),能量極小化,最終結(jié)構(gòu)與能量,其它信息,,,,,分子結(jié)構(gòu)的優(yōu)化 分子總能量是原子三維坐標(biāo)的函數(shù),在計(jì)算完初始構(gòu)象的分子能量后,要進(jìn)行能量極小化的迭代,直到達(dá)到收斂
35、標(biāo)準(zhǔn)為止。最終給出分子體系優(yōu)化的原子坐標(biāo),總空間能及各能量項(xiàng)的貢獻(xiàn)。,輸入坐標(biāo)及連接關(guān)系,力場選擇、作用項(xiàng)、參數(shù),能量極小化,最終結(jié)構(gòu)與能量,其它信息,,,,,分子結(jié)構(gòu)的優(yōu)化由于一般只是局部優(yōu)化,這樣的計(jì)算只能找到所用的初始構(gòu)象附近的“最優(yōu)構(gòu)象”。所以,選擇初始構(gòu)象是非常關(guān)鍵的。若為了找到全局能量最低構(gòu)象,須將所有可能的初始構(gòu)象分別進(jìn)行優(yōu)化,最后進(jìn)行比較,從而確定分子體系的最優(yōu)構(gòu)象。對于較大的分子,可能的初始構(gòu)象的數(shù)目會隨原子數(shù)
36、目的增加而急劇增加。在選擇初始構(gòu)象時(shí),應(yīng)把從基本的化學(xué)知識方面考慮是不可能的構(gòu)象略去。,能量極小化算法一級微商算法最陡下降算法 Steepest Descents - SD共軛梯度算法 Conjugate Gradients – CONJ二級微商算法牛頓-拉深法 Newton-Raphson Method,能量極小化算法-最陡下降法(SD),能量極小化算法-共軛梯度法(CONJ),,共軛梯度法是一個(gè)典
37、型的共軛方向法,它的每一個(gè)搜索方向是互相共軛的,而這些搜索方向d僅僅是負(fù)梯度方向與上一次迭代的搜索方向的組合,因此,存儲量少,計(jì)算方便。,分子動力學(xué)模擬的基本步驟,讀入模型參數(shù)、模擬控制參數(shù),初始化,能量優(yōu)化,升溫,長時(shí)間平衡模擬,數(shù)據(jù)分析,,,,,,,,,,,,,避免局部分子重疊,根據(jù)所有分子的當(dāng)前坐標(biāo)計(jì)算分子的受力根據(jù)受力更新分子的坐標(biāo)在此過程中收據(jù)用于計(jì)算宏觀性質(zhì)的有關(guān)信息,,SD+CONJ,能量極小化算法- Newton-R
38、aphson 法,,以函數(shù) 為例,,,,能量極小化算法比較最陡下降法: 計(jì)算簡單,需記憶的容量??;遠(yuǎn)離極小點(diǎn)時(shí)收斂快,常作為其他方法的第一步。收斂速度較慢。原因是最陡下降方向只有在該點(diǎn)附近有意義。共軛梯度法收斂快,易陷入局部勢阱,對初始結(jié)構(gòu)偏離不大 Newton-Raphson法計(jì)算量較大,當(dāng)微商小時(shí)收斂快,,分子力學(xué)的特點(diǎn)概念清楚,便于理解及應(yīng)用概念簡明易于接受。分子
39、力學(xué)中的總“能量”被分解成鍵的伸縮、鍵角彎曲、鍵的扭曲和非鍵作用等,比起量子化學(xué)計(jì)算中的Fock矩陣等概念來要直觀易懂。,分子力學(xué)的特點(diǎn)計(jì)算速度快量子化學(xué)從頭算的計(jì)算量隨原子軌道數(shù)目的增加,按4次方的速度上升,而分子力學(xué)的計(jì)算量僅與原子數(shù)目的平方成正比。 計(jì)算時(shí)間 - MM正比于原子數(shù)m的平方m2 QM正比于軌道數(shù)n的n4或n3,分子力學(xué)的特點(diǎn)與量子化學(xué)計(jì)算相輔相成 分子力學(xué)是一種經(jīng)驗(yàn)方
40、法,其力場是在大量的實(shí)驗(yàn)數(shù)據(jù)的基礎(chǔ)上產(chǎn)生的。分子力學(xué)宜用于對大分子進(jìn)行構(gòu)象分析、研究與空間效應(yīng)密切相關(guān)的有機(jī)反應(yīng)機(jī)理、反應(yīng)活性、有機(jī)物的穩(wěn)定性及生物活性分子的構(gòu)象與活性的關(guān)系;但是,當(dāng)研究對象與所用的分子力學(xué)力場參數(shù)化基于的分子集合相差甚遠(yuǎn)時(shí)不宜使用,當(dāng)然也不能用于人們感興趣但沒有足夠多的實(shí)驗(yàn)數(shù)據(jù)的新類型的分子。,分子力學(xué)的特點(diǎn)與量子化學(xué)計(jì)算相輔相成 對于化合物的電子結(jié)構(gòu)、光譜性質(zhì)、反應(yīng)能力等涉及電子運(yùn)動的研究,則應(yīng)使用量子化
41、學(xué)計(jì)算的方法。然而,在許多情況下,將量子化學(xué)計(jì)算和分子力學(xué)計(jì)算結(jié)合使用能取得較好的效果。分子力學(xué)計(jì)算結(jié)果可提供量子化學(xué)計(jì)算所需的分子構(gòu)象坐標(biāo),而量子化學(xué)計(jì)算結(jié)果又給出了分子力學(xué)所不能給出的分子的電子性質(zhì)。,分子力學(xué)應(yīng)用范例:QM/MM,QM/MM方法發(fā)展來源于可以將比較大的化學(xué)體系劃分為需要利用QM處理的發(fā)生化學(xué)反應(yīng)的電子重要區(qū)域和只是作為環(huán)境的用MM處理的部分,,QM/MM 基本原理,QM/MM 哈密頓如下:,,其中MM為常規(guī)的分子力
42、場,如 AMBER力場有如下函數(shù)表達(dá)式:,,,,QM/MM使用,QM方法的選擇QM/MM成鍵部分的處理,QM方法的選取,需要在計(jì)算效率及計(jì)算精度上取得一個(gè)較好的平衡(一般精度越高,計(jì)算量越大)一般計(jì)算速度 從頭算方法>DFT>半經(jīng)驗(yàn)量化方法,在Amber12中可以使用的QM方法,AMBER自帶的可用的半經(jīng)驗(yàn)量化方法有:PM3, AM1, MNDO, PDDG/PM3, PDDG/MNDO,DFTB及SCC-DFT
43、B;其中DFTB及SCC-DFTB需要到dftb網(wǎng)站去下載相應(yīng)的參數(shù);可以聯(lián)合使用外部量化程序: Gaussian, GAMESS-US, ADF, NWChem, Orca, TeraChem(基于GPU的量化程序),在Amber12中半經(jīng)驗(yàn)量化方法所支持的元素,MNDO: H, Li, Be, B, C, N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, Sn, I, Hg, PbAM1: H, C
44、, N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, I, HgPM3: H, Be, C, N, O, F, Mg, Al, Si, P, S, Cl, Zn, Ga, Ge, As, Se, Br, Cd, In, Sn, Sb, Te, I, Hg, Tl, Pb, BiPDDG/PM3: H, C, N, O, F, Si, P, S, Cl, Br, IPDDG/MNDO: H, C, N,
45、O, F, Cl, Br, IPM3CARB1: H, C, ODFTB/SCC-DFTB: H, C, N, O, S, Zn,QM與MM界面共價(jià)鍵處理方法,在日常模擬過程中,QM和MM區(qū)域經(jīng)常是成鍵連接在一起的,那么如何處理QM和MM界面的共價(jià)鍵?,A. Warshel, M. Levitt // Theoretical Studies of Enzymic Reactions: Dielectric, Electrostati
46、c and steric stabilization of the carbonium ion in the reaction of lysozyme. // J.Mol.Biol. 103 (1976), 227-249V. Thery, D. Rinaldi, J.-L. Rivail, B. Maigret, G.G. Ferenczy, J.Comp.Chem. 15 (1995), 269,1:使用雜化軌道處理MM區(qū)域共
47、價(jià)相連的原子,QM與MM界面共價(jià)鍵處理方法,把有方向性的雜化軌道放在邊界原子處,并使其中的一些軌道凍結(jié),不參與自洽迭代。,2. 使用 “l(fā)ink” 原子,QM與MM界面共價(jià)鍵處理方法,Link”原子引進(jìn)了額外的原子中心(通常為H原子),而這并不是真實(shí)系統(tǒng)的一部分。它的引入增加了人為的自由度,使得結(jié)構(gòu)優(yōu)化過程更加復(fù)雜。雖然存在缺點(diǎn),但是此種方法仍舊是最流行最廣泛應(yīng)用的邊界原子處理方法。,QM/MM 計(jì)算中QM區(qū)域的選擇,理論上是QM區(qū)越
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 膠原分子力學(xué)特性的分子動力學(xué)模擬研究.pdf
- 18447.應(yīng)用分子力學(xué)動力學(xué)研究有機(jī)分子蛋白分子的反應(yīng)機(jī)理
- 分子力場及其在分子動力學(xué)模擬中的應(yīng)用
- 分子動力學(xué)簡介
- 用光鑷研究微管系統(tǒng)的分子力學(xué)特征.pdf
- 蒙脫石層間結(jié)構(gòu)的分子力學(xué)和分子動力學(xué)模擬研究.pdf
- 分子力場方法及熱力學(xué)性質(zhì)的預(yù)測.pdf
- 分子力學(xué)在碳納米管力學(xué)中的應(yīng)用研究.pdf
- 酶反應(yīng)機(jī)理的多理論層次量子力學(xué)-分子力學(xué)研究.pdf
- 分子力學(xué)方法在納米管力學(xué)解析研究中的應(yīng)用.pdf
- 蛋白質(zhì)模擬的分子力學(xué)力場優(yōu)化.pdf
- 蒙脫石改型插層分子力學(xué)模擬初步研究.pdf
- 天然纖維素的單分子力學(xué)性能.pdf
- 氨基酸及多肽構(gòu)象及性質(zhì)的分子力學(xué)-量子力學(xué)研究.pdf
- 量子力學(xué)結(jié)合分子力學(xué)方法在酶及核酸堿基研究中的應(yīng)用.pdf
- 看得見稱得出的分子力
- 石油中烴類化合物的粗?;肿恿W(xué)-分子動力學(xué)力場的建立.pdf
- 高分子膠束的單分子力譜研究.pdf
- 原子-鍵電負(fù)性均衡融合進(jìn)分子力學(xué)的探討和應(yīng)用—離子水分子體系的力場模型與分子動力學(xué)模擬.pdf
- 天然無規(guī)蛋白質(zhì)動力學(xué)模擬的分子力場研究及開發(fā).pdf
評論
0/150
提交評論