數(shù)學(xué)4考研大綱_第1頁
已閱讀1頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、復(fù)制本帖地址菲菲2007081311:32回復(fù)o發(fā)站內(nèi)信數(shù)學(xué)四數(shù)學(xué)四章節(jié)章節(jié)2007年大綱內(nèi)容年大綱內(nèi)容2008年大綱內(nèi)容年大綱內(nèi)容對比分析對比分析微積分第一章:函數(shù)、極限、連續(xù)考試內(nèi)容:函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極

2、限的四則運算極限存在的兩個準則:單調(diào)有界準則和夾逼準則兩個重要極限:函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求:1.理解函數(shù)的概念。掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系。2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。5.了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念。6.了解極限

3、的性質(zhì)與極限存在的兩個準則。掌握極限的四則運算法則。掌握利用兩個重要極限求考試內(nèi)容:函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極限的四則運算極限存在的兩個準則:單調(diào)有界準則和夾逼準則兩個重要極限:函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函

4、數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求:1.理解函數(shù)的概念。掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系。2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。5.了解數(shù)列極限和函數(shù)極限(包對比:無變化第二章:一元函數(shù)微分學(xué)考試內(nèi)容:考試內(nèi)容:導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和經(jīng)濟意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法

5、線導(dǎo)數(shù)和微分的四則運算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法高階導(dǎo)數(shù)一階微分形式的不變性微分中值定理洛必達(L’Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值考試要求:考試要求:1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式,導(dǎo)數(shù)的四則運算法則及

6、復(fù)合函數(shù)的求導(dǎo)法則,會求分段函數(shù)的導(dǎo)數(shù),會求反函數(shù)與隱函數(shù)的導(dǎo)數(shù)。3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù)。4.了解微分的概念,導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會求函數(shù)的微分。5.理解羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理,了解柯西(Cauchy)中值定理,掌握這三個定理得簡單應(yīng)用。6.會用洛必達法則求極限。7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及應(yīng)

7、用。8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點和漸進線。9.會描繪簡單函數(shù)圖形??荚噧?nèi)容:考試內(nèi)容:導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和經(jīng)濟意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法高階導(dǎo)數(shù)一階微分形式的不變性微分中值定理洛必達(L’Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值考試要

8、求:考試要求:1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式,導(dǎo)數(shù)的四則運算法則及復(fù)合函數(shù)的求導(dǎo)法則,會求分段函數(shù)的導(dǎo)數(shù),會求反函數(shù)與隱函數(shù)的導(dǎo)數(shù)。3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù)。4.了解微分的概念,導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會求函數(shù)的微分。5.理解羅爾(Rolle)定理、拉格朗日(La

9、grange)中值定理,了解泰勒(Tayl)定理、柯西(Cauchy)中值定理,掌握這四個定理的簡單應(yīng)用。6.會用洛必達法則求極限。7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及應(yīng)用。8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(ab)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù)。當0時,f(x)的圖形是凹的;當0時,f(x)的圖形是凸的),會求函數(shù)圖形的對比:1:在考試要求第5條中增加了“了解泰勒(Tayl)

10、定理”2:強調(diào)了圖形凹凸的官方說明分析:1:泰勒(Tayl)定理是很重要的近似公式,當分析解析閉式不易求時,人們往往求助于此。注意在實際中的使用很有益處2:經(jīng)濟學(xué)和數(shù)學(xué)中,對于凹凸的定義確實是相反的。不同作者的定義可能說法不一致時造成混亂。其實凹凸在描述上是有方向的,高等數(shù)上是講向上凹或向上凸的,而我們的知覺就是凸嘛當然是向上羅。建議:1:對泰勒(Tayl)定理的了解,學(xué)會近似逼近的這種觀點。2:不論來自何種專業(yè)背景的學(xué)生,按官方定義找

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論