版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、東北師范大學(xué)碩士學(xué)位論文復(fù)流形的共形不變量和Wodzicki留數(shù)姓名:李婷婷申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):基礎(chǔ)數(shù)學(xué)指導(dǎo)教師:王勇20090501AbstractForanevendimensionalcompactorientedconformalrealmanifoldwithoutboundary,ConneshasconstructedacanonicalFredholmmoduleanddefinedaconformalinvaria
2、ntbytheW6dzickiresidueInparticular,inthe4dimensionalcase,thisinvarianthasbeenexplicitlycomputedbytheconformaldeformationwayUgaldehasgeneralizedConnes’resulttothehigherdimensionalcaseandhehasgaveallexplicitexpression0fthe
3、Connes’invariantinthefiatcaseandindicatedthewayofcomputationinthegeneralcase。Inthispaper,forcomplexmanifolds,weconstructaconformalinvariantusingtheWodzickiresidueandtheaoperatorintheframeworkofConnesWecomputethisconforma
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Wodzicki留數(shù)和雙共形不變量.pdf
- 紐結(jié)多項(xiàng)式不變量與三維流形量子不變量.pdf
- 三維流形不變量的表示.pdf
- Riemann流形的Betti數(shù)和特征值及球面同倫群的伸縮不變量.pdf
- 一類三維流形不變量.pdf
- 廣義復(fù)流形上的N=2超共形頂點(diǎn)代數(shù).pdf
- 基于流形運(yùn)動(dòng)群不變量的非剛體重建方法研究.pdf
- 48249.鏈環(huán)alexander多項(xiàng)式的性質(zhì)和三維流形不變量
- 程序不變量外文翻譯
- 模空間,量子不變量和拓?fù)湎?pdf
- 不變量理論及應(yīng)用.pdf
- 活動(dòng)標(biāo)架和聯(lián)合微分不變量.pdf
- 旋轉(zhuǎn)與縮放不變的紋理不變量研究.pdf
- 基于不變量的概念格約簡(jiǎn).pdf
- 有向圖不變量的研究.pdf
- 紐結(jié)與鏈環(huán)不變量的研究.pdf
- 平面構(gòu)形的_3不變量分類.pdf
- 簡(jiǎn)單Yang-Baxter方程和鏈環(huán)不變量.pdf
- 全純曲線的相似分類和Elliott不變量.pdf
- 關(guān)于直線構(gòu)形的φ3不變量.pdf
評(píng)論
0/150
提交評(píng)論