版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p> Drive force control of a parallel-series hybrid system</p><p><b> Abstract</b></p><p> Since each component of a hybrid system has its own limit of performance, the vehi
2、cle power depends on the weakest component. So it is necessary to design the balance of the components. The vehicle must be controlled to operate within the performance range of all the components. We designed the specif
3、ications of each component backward from the required drive force. In this paper we describe a control method for the motor torque to avoid damage to the battery, when the battery is at a low state </p><p>
4、 1. Introduction</p><p> In recent years, vehicles with internal combustion engines have increasingly played an important role as a means of transportation, and are contributing much to the development of s
5、ociety. However, vehicle emissions contribute to air pollution and possibly even global warming, which require effective countermeasures. Various developments are being made to reduce these emissions, but no further larg
6、e improvements can be expected from merely improving the current engines and transmissions. Thus, g</p><p> Generally speaking, hybrid systems are classified as series or parallel systems. At Toyota, we hav
7、e developed the Toyota Hybrid System (hereinafter referred to as the THS) by combining the advantages of both systems. In this sense the THS could be classified as a parallel-series type of system. Since the THS constant
8、ly optimizes engine operation, emissions are cleaner and better fuel economy can be achieved. During braking, Kinetic energy is recovered by the motor, thereby reducing fuel consumpt</p><p> Emissions and f
9、uel economy are greatly improved by using the THS for the power train system. However, the THS incorporates engine, motor, battery and other components, each of which has its own particular capability. In other words, th
10、e driving force must be generated within the limits of each respective component. In particular, since the battery output varies greatly depending on its level of charge, the driving force has to be controlled with this
11、in mind.</p><p> This report clarifies the performance required of the respective THS components based on the driving force necessary for a vehicle. The method of controlling the driving force, both when th
12、e battery has high and low charge, is also described.</p><p> 2. Toyota hybrid system (THS) [1,2]</p><p> As Fig. 1 shows, the THS is made up of a hybrid transmission, engine and battery.</
13、p><p> 2.1. Hybrid transmission</p><p> The transmission consists of motor, generator, power split device and reduction gear. The power split device is a planetary gear. Sun gear, ring gear and p
14、lanetary carrier are directly connected to generator, motor and engine, respectively. The ring gear is also connected to the reduction gear. Thus, engine power is split into the generator and the driving wheels. With thi
15、s type of mechanism, the revolutions of each of the respective axes are related as follows. Here, the gear ratio between the </p><p> Fig. 1. Schematic of Toyota hybrid system (THS).</p><p> r
16、ing gear is ρ:</p><p> where Ne is the engine speed, Ng the generator speed and Nm the motor speed. </p><p> Torque transferred to the motor and the generator axes from the engine is obtained
17、as follows:</p><p> where Te is the engine torque.</p><p> The drive shaft is connected to the ring gear via a reduction gear. Consequently, motor speed and vehicle speed are proportional. If
18、the reduction gear ratio isη, the axle torque is obtained as follows:</p><p> where Tm is the motor torque.</p><p> As shown above, the axle torque is proportional to the total torque of the e
19、ngine and the motor on the motor axis. Accordingly, we will refer to motor axis torque instead of axle torque.</p><p> 2.2. Engine</p><p> A gasoline engine having a displacement of 1.5 l spec
20、ially designed for the THS is adopted [3]. This engine has high expansion ratio cycle, variable valve timing system and other mechanisms in order to improve engine efficiency and realize cleaner emissions. In particular,
21、 a large reduction in friction is achieved by setting the maximum speed at 4000 rpm (=Ne max).</p><p> 2.3. Battery</p><p> As sealed nickel metal hydride battery is adopted. The advantages of
22、 this type of battery are high power density and long life. this battery achieves more than three times the power density of those developed for conventional electric vehicles [4].</p><p> 3. Required drivi
23、ng force and performance</p><p> The THS offers excellent fuel economy and emissions reduction. But it must have the ability to output enough driving force for a vehicle. This section discusses the running
24、performance required of the vehicle and the essential items required of the respective components. </p><p> Road conditions such as slopes, speed limits and the required speed to pass other vehicles determi
25、ne the power performance required by the vehicle. Table 1 indicates the power performance needed in Japan.</p><p> 3.1. Planetary gear ratioρ</p><p> The planetary gear ratio (ρ) has almost no
26、 effect on fuel economy and/or emissions. This is because the required engine power (i.e. engine condition) depends on vehicle speed, driving force and battery condition, and not on the planetary gear ratio. Conversely,
27、it is largely limited by the degree of installability in the vehicle and manufacturing aspects, leaving little room for design. In the currently developed THS, ρ=0.385.</p><p> 3.2. Maximum engine power<
28、/p><p> Since the battery cannot be used for cruising due to its limited power storage capacity, most driving is reliant on engine power only. Fig. 2 shows the power required by a vehicle equipped with the THS
29、, based on its driving resistance. Accordingly, the power that is required for cruising on a level road at 140 km/h or climbing a 5% slope at 105 km/h will be 32 kW. If the transmission loss is taken into account, the en
30、gine requires 40 kW (=Pe max) of power. The THS uses an engine with maximum pow</p><p> 3.3. Maximum generator torque</p><p> As described in Section 2, the maximum engine speed is 4000 rpm (=
31、Ne max). To attain maximum torque at this speed, maximum engine torque is obtained as follows:</p><p> From Eq. (3), the maximum torque on the generator axis will be as follows:</p><p> This i
32、s the torque at which the generator can operate without being driven to over speed. Actually, higher torque is required because of acceleration/deceleration of generator speed and dispersion of engine and/or generator to
33、rque. By adding 40% torque margin to the generator, the necessary torque is calculated as follows:</p><p> 3.4. Maximum motor torque</p><p> From Fig. 3, it can be seen that the motor axis nee
34、ds to have a torque of 304 Nm to acquire the 30% slope climbing performance. This torque merely balances the vehicle on the slope. To obtain enough starting and accelerating performance, it is necessary to have additiona
35、l torque of about 70 Nm, or about 370 Nm in total.</p><p> From Eq. (2), the transmitted torque from the engine is obtained as follows:</p><p> Consequently, a motor torque of 300 Nm (=Tm max)
36、 is necessary.</p><p> 3.5. Maximum battery power</p><p> As Fig. 2 shows, driving power of 49 kW is needed for climbing on a 5%slope at 130 km/h. Thus, the necessary battery power is obtained
37、 by subtracting the engine-generated power from this. As already discussed, if an engine having the minimum required power is installed, it can only provide 32 kW of power, so the required battery power will be 17 kW. If
38、 the possible loss that occurs when the battery supplies power to the motor is taken into account, battery power of 20 kW will be needed. Thus, it</p><p> Table 3 summarizes the specifications actually adop
39、ted by the THS and the requirements determined by the above discussion. The required items represent an example when minimum engine power is selected. In other words, if the engine is changed, each of the items have to b
40、e changed accordingly.</p><p> 4. Driving force control</p><p> The THS requires controls not necessary for conventional or electric vehicles in order to control the engine, motor and generato
41、r cooperatively. Fig. 4 outlines the control system.</p><p> Fig. 4. Control diagram of the THS.</p><p> Inputs of control system are accelerator position, vehicle speed (motor speed), generat
42、or speed and available battery power. Outputs are the engine-required power, generator torque and motor torque.</p><p> First, drive torque demanded by the driver (converted to the motor axis) is calculated
43、 from the accelerator position and the vehicle speed. The necessary drive power is calculated from this torque and the motor speed. Required power for the system is the total of the required drive power, the required pow
44、er to charge the battery and the power loss in the system. If this total required power exceeds the prescribed value, it becomes required engine power. If it is below the prescribed value, the v</p><p> Fig
45、. 6 shows the respective maximum drive torque of the battery, the engine, and the engine plus the battery while running based on the controls above, when the THS has the components as specified in Section 3.</p>&
46、lt;p> 5. Conclusions</p><p> This paper discussed the control of drive power in the Toyota Hybrid System. The following conclusions were obtained:</p><p> The performance required for each
47、 component can be determined by reversely calculating power performance required for a vehicle.</p><p> The available battery power varies according to its state of charge. However, by limiting the motor to
48、rque, the battery power can be controlled to within the battery's available power.</p><p> 混合動力系統(tǒng)驅(qū)動力的串并聯(lián)控制</p><p><b> 摘要</b></p><p> 由于混合動力系統(tǒng)的每個部分都有自己的極限性能,所以汽車動力
49、取決于最脆弱的哪一個組成部分。因此,有必要對各個部件進行平衡設計。因為車輛必須在所有部件的控制范圍內(nèi)從事經(jīng)營活動,所以我們根據(jù)所要求的驅(qū)動力反過來進行各部件的設計。在本文中,我們描述一種扭矩控制方法,以避免在低電量時損壞電池。日本B.V.科技公司的汽車工程協(xié)會保留所有版權。</p><p><b> 簡介</b></p><p> 近年來,內(nèi)燃機車輛作為一種交通工
50、具發(fā)揮了越來越重要的作用,為社會的發(fā)展做出了很多貢獻。然而,車輛排放的廢氣使空氣遭到污染,甚至使全球氣候變暖,這就需要有效地對策去解決。在減少廢氣的排放方面正在取得各種各樣的進展,但是,僅僅從提高引擎和傳動裝置已不再有很大希望得到改善。因此,發(fā)展電力、混合動力和天然氣驅(qū)動的車輛是目前的最大期望。從當前使用的技術和汽油站檢測服務設施,結(jié)合當前已安裝的基礎設施,以汽油發(fā)動機和電動機驅(qū)動的混合動力汽車是最現(xiàn)實的解決方案之一。</p>
51、;<p> 總的來說,混合動力系統(tǒng)分為串聯(lián)和并聯(lián)系統(tǒng)。在豐田,我們通過將這兩個系統(tǒng)的優(yōu)點結(jié)合起來,開發(fā)了豐田混合動力系統(tǒng)(以下簡稱THS)。在某種意義上THS可以稱作串并聯(lián)控制系統(tǒng)。由于豐田混合動力系統(tǒng)對發(fā)動機操作和排放的不斷優(yōu)化,因此可以取得更好的燃油經(jīng)濟性。在制動的過程中,動能被電動機重新回收,從而減少燃油消耗和隨后的CO2排放量。</p><p> 通過使用豐田混合動力系統(tǒng)作為動力驅(qū)動系統(tǒng)
52、,廢棄的排放量和燃油經(jīng)濟性得到大大提高。然而,豐田混合動力系統(tǒng)采用了發(fā)動機、電動機、電池和其他組件,每個組件都有自己的特殊能力。換句話說,每個組件必須在自己的能力限制范圍內(nèi)生成驅(qū)動力。特別是由于電池的輸出很大水平上取決于其充電量,因此要時刻銘記驅(qū)動力必須被限制。</p><p> 這份報告澄清了基于車輛必須的驅(qū)動力對與豐田混合動力系統(tǒng)各組件的性能要求。驅(qū)動力在電池高低壓時的控制方法也作了先關描述。</p&
53、gt;<p><b> 豐田混合動力系統(tǒng)</b></p><p> 如圖.1所示,豐田混合動力系統(tǒng)由混合動力傳動裝置、發(fā)動機和電池組成。</p><p><b> 混合動力傳動系統(tǒng)</b></p><p> 混合動力傳動系統(tǒng)由發(fā)動機、發(fā)電機、動力分配裝置和減速器組成。動力分配裝置是一個行星齒輪機構(gòu)。太
54、陽輪、齒圈和行星架分別直接連接到發(fā)電機、電動機和發(fā)動機,齒圈也直接連接到減速器。因此,發(fā)動機的動力被分配到發(fā)電機和驅(qū)動輪。使用這種機械裝置,各軸的轉(zhuǎn)速有以下關系。在這里,太陽輪和齒圈之間的傳動比是ρ:</p><p> 這里,Ne是發(fā)動機的轉(zhuǎn)速,Ng是發(fā)電機的轉(zhuǎn)速,Nm是電動機的轉(zhuǎn)速。</p><p> Fig. 1. Schematic of Toyota hybrid system
55、 (THS).</p><p> 傳遞到電動機的轉(zhuǎn)矩和發(fā)電機從發(fā)動機獲得的轉(zhuǎn)矩如下:</p><p> 這里,Te是發(fā)動機的輸出轉(zhuǎn)矩。</p><p> 驅(qū)動軸通過減速器連接到齒圈,因此,車連行駛速度與電機轉(zhuǎn)速成正比。如果減速器的減速比為η,則驅(qū)動軸獲得的扭矩如下式:</p><p> 這里Tm為電動機速出扭矩。</p>
56、<p> 如上式所示,驅(qū)動軸獲得的扭矩與發(fā)動機和電動機軸上輸出的總扭矩成正比。因此,我們會參考電動機軸輸出扭矩而不是驅(qū)動軸上獲得的扭矩。</p><p><b> 2.2. 發(fā)動機</b></p><p> 豐田混合動力系統(tǒng)采用專門設計的排量為1.5L的汽油發(fā)動機。為了提高發(fā)動機的效率、實現(xiàn)情節(jié)的排放,這臺發(fā)動機采用了高膨脹率循環(huán)、可變相位配氣系統(tǒng)以
57、及其他機構(gòu)。特別是實現(xiàn)了轉(zhuǎn)速為4000r/min(最高轉(zhuǎn)速)時最大限度的減少了摩擦力。</p><p><b> 2.3.電池</b></p><p> 電池是采用了密封鎳金氫化物電池。這種電池的優(yōu)點是功率密度高、壽命長。這種電池的功率密度可以達到3倍以上常規(guī)電動車開發(fā)的電池。</p><p><b> 驅(qū)動力和性能要求<
58、/b></p><p> 豐田混合動力系統(tǒng)提供了有意的燃油經(jīng)濟性和廢氣排放,但是它必須還要具備足夠的車輛動力輸出要求。本節(jié)討論車輛運動性能要求以及各組件的基本要求。</p><p> 汽車的動力性能由通過的道路條件(如斜坡)、車速限制、所需超車速度等來確定。表.1所示為在日本汽車行駛的動力性能要求。</p><p> 3.1. 行星排特性參數(shù)</p
59、><p> 行星排特性參數(shù)ρ對車輛燃油經(jīng)濟性或排量幾乎沒有影響。這是因為,車輛的行駛速度、驅(qū)動力和電池條件取決于所需發(fā)動機功率(即發(fā)動機狀態(tài)),而不是行星排特性參數(shù)。相反,他很大程度上受限制于車輛的總體布置預留的設計空間。目前在先進的豐田混合動力系統(tǒng)ρ=0.385。</p><p> 3.2. 最大發(fā)動機功率</p><p> 由于電池存儲容量的限制,其使用范圍不
60、能超出其限制范圍。大部分驅(qū)動力是僅僅依靠發(fā)動機提供的能量。圖.2所示基于本田混合動力系統(tǒng)的車輛行駛阻力對車輛動力的規(guī)格要求。相應地,車輛以140km/h的速度行駛在平整的公路上或以105km/h的速度在坡度為5%坡道上行駛所需要的功率為32kw。如果考慮傳動系的損失在內(nèi),就需要發(fā)動機提供40kw的功率。為了在保持良好的燃油經(jīng)濟性的同時得到良好的車輛動力性能,豐田混合動力系統(tǒng)采用最大功率為43kw的發(fā)動機。</p><
61、p> 3.3. 發(fā)電機最大扭矩</p><p> 如第二節(jié)所述,發(fā)動機最高轉(zhuǎn)速為4000r/min,要達到這一轉(zhuǎn)速是的最大扭矩從發(fā)動機獲得的最大扭矩如下:</p><p> 根據(jù)式(3),作用在發(fā)電機上的最大扭矩如下:</p><p> 這是在不超速行駛的情況下驅(qū)動發(fā)電機運轉(zhuǎn)的扭矩。實際上需要跟大的扭矩,因為發(fā)電機的加速或加速以及發(fā)電機扭矩的分散。因此
62、要增加40%的扭矩作用在發(fā)電機上,所需扭矩計算如下:</p><p> 3.4. 電動機輸出最大扭矩</p><p> 從圖.3中可以看出,為了獲得30%的爬坡性能,電動機需要提供304Nm的扭矩。這個扭矩僅僅是為了平衡車輛的坡道阻力,要獲得足夠的啟動和加速性能,需要額外提供70Nm的扭矩或提供總扭矩為370Nm。</p><p> 根據(jù)式(2),從發(fā)動機傳輸
63、傳輸?shù)呐ぞ乜梢酝ㄟ^下面計算獲得:</p><p> 因此,電動機必須能夠提供300Nm的最大扭矩。</p><p> 3.5. 電池的最大功率</p><p> 如圖.2所示,當車輛以130km/h的速度爬上坡度為5%的斜坡時需要提供49kw的功率。因此減去發(fā)動機提供的功率剩下的就是電池所要提供的功率。正如前面所述,如果安裝了小功率的發(fā)動機,它僅能提供32kw
64、的功率,剩下所需的17kw的功率需要由電池來供應。如果將可能發(fā)生的損失考慮在內(nèi)的話,電池需要提供20kw的功率。因此,有必要針對實際的坡道通過能力來確定電池的供電能力要求。表.2列出了所需要的電池規(guī)格。</p><p> 表.3概括了在上述討論的情況下實際采用的電池規(guī)格要求。所需的項目為實例時選擇了最小的發(fā)動機功率,換句話說,如果發(fā)動機做了更改則每個項目都要進行相應的更改。</p><p&g
65、t;<b> 驅(qū)動力控制</b></p><p> 為了控制發(fā)動機、電動機以及發(fā)電機之間的合作,豐田混合動力系統(tǒng)采用了常規(guī)汽車或電動汽車所不必擁有的控制系統(tǒng)。圖.4列出了控制系統(tǒng)圖。</p><p> Fig. 4. Control diagram of the THS.</p><p> 加速踏板位置、車輛行駛速度(電動機轉(zhuǎn)速)、發(fā)電
66、機轉(zhuǎn)速以及電池可用電量的相關參數(shù)均作為變量輸入到控制系統(tǒng)。輸出參數(shù)有所需發(fā)動機功率、發(fā)電機輸入扭矩、電動機輸出扭矩。首先,驅(qū)動力矩由驅(qū)動程序依據(jù)加速踏板位置和車輛行駛速度計算確定。所需要的驅(qū)動功率是通過當時的扭矩和電動機轉(zhuǎn)速計算獲得。系統(tǒng)系統(tǒng)所需的動力是所需驅(qū)動力、電池充電所需動力以及系統(tǒng)動力損失動力的和。如果所需的總功率超過預定值,它將成為所需的發(fā)動力功率。如果低于預定值,車輛依靠電池功能而無需使用發(fā)動機。其次,發(fā)動機最高性能轉(zhuǎn)速下產(chǎn)
67、生的能量是由計算得到,這時發(fā)動機的目標轉(zhuǎn)速。目標速度是利用發(fā)動機的目標轉(zhuǎn)速和電動機轉(zhuǎn)速利用式(1)計算得到。發(fā)電機輸入轉(zhuǎn)矩由PID控制確定。發(fā)動機輸出扭矩可由式(3)計算得到。電動機輸出扭矩由最初計算的驅(qū)動力矩減去發(fā)動機輸出扭矩得到。因為電動機產(chǎn)生扭矩所消耗的能量不可能超過依靠發(fā)電機和電池同時供應的能量,所以有必要將電動機的功率限制在發(fā)電機和電池供用的總功率范圍內(nèi),圖.5示意了控制方法。發(fā)電機的輸出功率和電池供應的有效功率之和是可以被電
68、動機利用的功率。電動機輸出的有效扭矩可以根據(jù)電動機轉(zhuǎn)速和總功率供應來獲得。</p><p> 圖.6顯示了當豐田混合動力系統(tǒng)被分割成只有電池供能、只有發(fā)動機供能以及發(fā)動機和電池同時供能三種情況是各自所能提供的最大驅(qū)動力矩。</p><p><b> 結(jié)論</b></p><p> 本文討論了豐田混合動力系統(tǒng)中的驅(qū)動力控制,獲得以下結(jié)論:&
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 混合動力系統(tǒng)驅(qū)動力的串并聯(lián)控制-畢業(yè)論文外文翻譯
- 外文翻譯---基于advisor的混合動力車輛動力系統(tǒng)的開發(fā)
- 外文翻譯---基于advisor的混合動力車輛動力系統(tǒng)的開發(fā)
- 外文翻譯---基于advisor的混合動力車輛動力系統(tǒng)的開發(fā)
- 并聯(lián)式混合動力汽車動力系統(tǒng)設計
- 外文翻譯---基于advisor的混合動力車輛動力系統(tǒng)的開發(fā).doc
- 外文翻譯---基于advisor的混合動力車輛動力系統(tǒng)的開發(fā).doc
- 工程車輛并聯(lián)式液壓混合動力系統(tǒng)研究.pdf
- 動力系統(tǒng)簡介[畢業(yè)論文]
- 并聯(lián)混合動力汽車動力系統(tǒng)優(yōu)化及控制策略研究.pdf
- 并聯(lián)混合動力汽車動力系統(tǒng)模糊優(yōu)化控制策略的研究.pdf
- 符號動力系統(tǒng)簡介[畢業(yè)論文]
- 車輛工程外文翻譯---電動汽車新型動力系統(tǒng)的發(fā)展
- 車輛工程外文翻譯---電動汽車新型動力系統(tǒng)的發(fā)展
- AMT并聯(lián)式混合動力客車動力系統(tǒng)控制與仿真.pdf
- 并聯(lián)式混合動力汽車動力系統(tǒng)參數(shù)匹配研究.pdf
- 外文翻譯---綜合式馬達輔助混合動力系統(tǒng)
- 并聯(lián)式氣-電混合動力系統(tǒng)控制研究.pdf
- 外文翻譯---綜合式馬達輔助混合動力系統(tǒng)
- 并聯(lián)混合動力汽車動力系統(tǒng)參數(shù)與控制策略設計及仿真.pdf
評論
0/150
提交評論