版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p> 中文6415字,3870單詞,20800英文字符</p><p> 出處:Jayasena V, Khu W S, NASAR‐ABBAS S M. THE DEVELOPMENT AND SENSORY ACCEPTABILITY OF LUPIN‐BASED TOFU[J]. Journal of Food Quality, 2010, 33(1): 85-97.</p>
2、<p> 本科畢業(yè)設(shè)計(論文)</p><p> 外文參考文獻(xiàn)譯文及原文</p><p> 學(xué) 院 輕工化工學(xué)院 </p><p> 專 業(yè) 食品科學(xué)與工程 </p><p> 年級班別 2006級(2)班 </p><p><b&
3、gt; 2010年6月</b></p><p><b> 目 錄</b></p><p> 1 外文文獻(xiàn)譯文3</p><p> 1.1 摘 要3</p><p> 1.2 實際應(yīng)用3</p><p><b> 1.3 引 言4</b
4、></p><p> 1.4 材料與方法5</p><p> 1.4.1 實驗材料5</p><p> 1.4.2 大豆豆腐的研制5</p><p> 1.4.3 羽扇豆大豆豆腐制作5</p><p> 1.4.4 物理化學(xué)分析6</p><p> 1.4.5 感官評
5、定6</p><p> 1.4.6 數(shù)據(jù)分析7</p><p> 1.5 結(jié)果與討論7</p><p> 1.5.1 羽扇豆和大豆的含量7</p><p> 1.5.2 豆腐的產(chǎn)量和水分含量7</p><p> 1.5.3 蛋白質(zhì)和脂肪含量8</p><p> 1.5.4
6、 顏色測定9</p><p> 1.5.5 組織結(jié)構(gòu)10</p><p> 1.5.6 感官評價10</p><p> 1.6 結(jié) 論12</p><p> 2 外文文獻(xiàn)原文13</p><p><b> 1 外文文獻(xiàn)譯文</b></p><p> 羽
7、扇豆豆腐的發(fā)展及其感官的可接受度的研究</p><p> V.JAYASENA,W.S.KHU and S.M.NASAR-ABBAS</p><p> 科廷科技大學(xué),公眾衛(wèi)生學(xué)院,食品科學(xué)與工程</p><p> 澳大利亞,西澳6845,珀斯,郵政總局信箱:U1987</p><p> 收稿日期:2008-03-06</p&g
8、t;<p> 發(fā)表日期:2008-10-28</p><p><b> 1.1 摘 要</b></p><p> 目前已對用羽扇豆代替所制成的豆腐對其質(zhì)量及其感官可接受性所造成的影響進(jìn)行了研究。用標(biāo)準(zhǔn)的方法使用0、20%、30%、40%、50%和60%的羽扇豆代替大豆來制備豆腐樣品,并且從產(chǎn)量、化學(xué)成分(水分、蛋白質(zhì)及脂肪含量)、結(jié)構(gòu)組織、顏色
9、和感官特性來對產(chǎn)品進(jìn)行評價,得出其產(chǎn)品產(chǎn)量、蛋白質(zhì)和脂肪含量會伴隨著羽扇豆的增加而減少。在新鮮的基礎(chǔ)上,100g大豆伴隨著羽扇豆從0%-60%的添加量最后產(chǎn)量會從306g降低到200g,但是在干的基礎(chǔ)上添加50%的羽扇豆產(chǎn)量并無明顯的減少(P<0.05)。伴隨著羽扇豆的添加量從0%-60%,蛋白質(zhì)和脂肪含量(折干計算)則會依次由64.5%下降到51.6%,從29.2%下降到13.4%。羽扇豆的添加量也會影響豆腐樣品的顏色。但是在L
10、*和a*值卻沒有受到影響。b*(代表黃度)會伴隨著羽扇豆添加量的增加而明顯增加。結(jié)構(gòu)組織成分(硬度、聚結(jié)性、彈性和咀嚼性)不會受到羽扇豆的添加影響。</p><p> 根據(jù)感官評價結(jié)果表明當(dāng)羽扇豆的含量在40%時對于豆腐樣品的結(jié)構(gòu)組織、風(fēng)味及整體可接受水平是沒有影響的。當(dāng)羽扇豆含量在30%-40%時可以改善油炸豆腐樣品的外觀。這一研究表明羽扇豆在豆腐加工中取代40%的大豆含量,并且產(chǎn)品在質(zhì)量和其接受水平上無明顯
11、的改變。</p><p><b> 1.2 實際應(yīng)用</b></p><p> 羽扇豆跟大豆有相似的營養(yǎng)及功能成分,因此羽扇豆可以被用來取代包括豆腐等的一部分大豆食品制品。相比于大豆,羽扇豆具有更低的脂肪含量,但是它的蛋白質(zhì)含量是相當(dāng)?shù)?。羽扇豆的添加可以使豆腐里頭的脂肪含量降低卻不會影響產(chǎn)品的感官可接受性。低脂高蛋白的豆腐相比于常規(guī)豆腐將會成為一個健康的新主張,并
12、且可以成為低脂高蛋白健康飲食很好的一個選擇。由于羽扇豆的成本幾乎是大豆成本的一半,因此將羽扇豆添加到豆腐中也能實現(xiàn)到合理的節(jié)省成本費用。</p><p><b> 1.3 引 言</b></p><p> 羽扇豆已被用作人類食品及牲畜喂養(yǎng)長達(dá)多個世紀(jì)。在3000年前,羽扇豆在整一個地中海地區(qū)已被用作食品。澳大利亞生產(chǎn)最出名的甜羽扇豆(藍(lán)羽扇豆)。那里是世界上最大的
13、生產(chǎn)地和重要的羽扇豆出口地。它大部分被作為牲畜飼料及小部分用作人類消費。伴隨著不斷增加的受限性及高成本的動物供應(yīng)和大豆蛋白,促使了低成本的羽扇豆在食品配方中的加入。羽扇豆是一類具有高蛋白(32%)卻低脂肪(6%)的低成本豆科類作物。羽扇豆油基于其高水平的類胡蘿卜素和其他的抗氧化物而十分穩(wěn)定,它包含了大部分的不飽和脂肪酸,分別有34%的單不飽和脂肪酸和44%的多不飽和脂肪酸。羽扇豆還有一系列潛在的食品應(yīng)用,包括發(fā)酵食品例如豆酵餅、豆面醬和
14、大豆調(diào)味汁,牛奶、飲料和發(fā)酵奶制品、烘烤制品、面食和小吃等。</p><p> 豆腐,是一類由大豆生產(chǎn)出來的高營養(yǎng)的凝膠類食品,在亞洲許多國家作為一類傳統(tǒng)的食品普遍消費。豆腐被認(rèn)為是一種如此棒的食品是由于其富含有助于消化的優(yōu)質(zhì)蛋白(良好的氨基酸平衡)。在傳統(tǒng)大豆豆腐制品中摻入其他豆科類植物例如花生、蠶豆、紅豌豆和翼豆所造成的影響也有被研究學(xué)習(xí)。因此羽扇豆應(yīng)用在豆腐加工中同樣具有很大的潛力。相比于大豆,羽扇豆具有
15、可比的蛋白質(zhì)及低脂肪含量。蛋白質(zhì)是主要的功能成分并決定了豆腐的質(zhì)量。研究表明羽扇豆蛋白和大豆蛋白具有相似的功能成分。目前羽扇豆的成本大概只大豆成本的一半。這樣,羽扇豆代替大豆就可被認(rèn)為是符合經(jīng)濟(jì)效益的。羽扇豆優(yōu)于大豆的因素之一就有加工過程中的加熱步驟能夠破壞抗?fàn)I養(yǎng)因子,例如破壞并不需要的胰蛋白酶抑制劑。</p><p> 先前的研究得出豆腐中的羽扇豆取代的量在30%左右。然而,對羽扇豆豆腐其物理特性、營養(yǎng)成分和
16、其可接受性的研究都是有限的。這一次研究的主要目標(biāo)是在沒有影響豆腐產(chǎn)品的物理及感官特性基礎(chǔ)上決定羽扇豆能取代大豆的最大添加量。</p><p><b> 1.4 材料與方法</b></p><p> 1.4.1 實驗材料</p><p> 大豆購于當(dāng)?shù)厥袌?。西澳的東西部發(fā)展委員會提供澳大利亞藍(lán)羽扇豆用于研究。從化學(xué)供應(yīng)中獲得純化的硫酸鈣(C
17、aSO4.10H2O,分析純)和氫氧化鈉(NaOH,分析純)。碳酸氫鈉(烘烤蘇打)取自于麥肯齊(澳大利亞一控股有限公司)。表</p><p> 一中共用到六組處理數(shù)據(jù)三個變量用于研究。</p><p> 表1 羽扇豆在不同水平上取代大豆的豆腐制作配方</p><p> 1.4.2 大豆豆腐的研制</p><p> 大豆250g清洗后在
18、室溫(25℃)下浸泡于水中12個小時(大豆:水是1:3,重量/體積)。浸泡后的大豆排干水后用2.5L(大豆干重的十倍)的溫水(40℃)裝在攪拌機中。打碎后,大豆?jié){通過一個濾布來過濾得到豆奶。豆奶置于一個容器內(nèi)通過不斷攪拌煮開十分鐘后繼續(xù)攪拌到冷卻到75℃。</p><p> 用約20Ml、75℃的熱水來溶解7.5g的硫酸鈣(大豆干重的3%)來制備凝固劑懸浮液。準(zhǔn)備好的凝固劑添加到熱豆奶中并連續(xù)攪拌10s,然后用
19、30分鐘的時間使混合物的蛋白質(zhì)凝固。30min后,這些凝乳就被轉(zhuǎn)移到鋪有一粗濾布的豆腐盤中(規(guī)格為22cm*15cm*12.5cm)里。最后將這些粗濾布折疊起在頂部后再放置一25g/cm2的重物壓在上方45分鐘。記錄經(jīng)壓過后的豆腐重量。豆腐在10℃的冷水下浸泡30分鐘冷卻后再切成小塊(規(guī)格為4*4*2cm)。小塊的豆腐浸在去離子水中并放入到冰箱中(4—5℃)隔夜后做物理化學(xué)分析。</p><p> 1.4.3
20、羽扇豆大豆豆腐制作</p><p> 將全部的羽扇豆(250g)徹底清洗后在0.5%的碳酸氫鈉溶液中(大豆重量:水體積是1:3)室溫(25℃)下浸泡12個小時。碳酸氫鈉添加到里面是使得豆皮軟化和減少由此產(chǎn)生的粉狀質(zhì)地豆腐。這些浸泡過的豆排干水后再用2.5L(大豆干重的十倍)的溫水(40℃)用攪拌機打成碎2分鐘。打碎后,這些羽扇豆凝乳被放置于一混合容器中,在羽扇豆?jié){中加入20%的氫氧化鈉溶液使得pH達(dá)到8.5來溶
21、解蛋白質(zhì)。用一粗濾布使羽扇豆奶從豆?jié){中排除。羽扇豆豆奶和加熱的大豆豆奶通過表一所提處理組的比例進(jìn)行混合。羽扇豆豆奶之所以不加熱時因為加熱會形成細(xì)顆粒,這是在豆腐制作中不希望出現(xiàn)的。最后其凝固、模壓制品、切塊和儲藏步驟則是與大豆豆腐制作室一樣的。</p><p> 1.4.4 物理化學(xué)分析</p><p> 產(chǎn)量(g/100g生豆) 豆腐的產(chǎn)量是基于250g大豆中獲得的被壓制過的豆腐的
22、重量計算出來的。豆腐的產(chǎn)量是基于干重而不包括水分的。然而,豆腐的產(chǎn)量還不包括豆皮的重量。其中大豆外殼重量占10%,羽扇豆的占23%。</p><p> 水分、蛋白質(zhì)和脂肪含量 官方分析化學(xué)家協(xié)會(AOAC)國際性的方法被應(yīng)用于確定用于實驗和豆腐樣品里的羽扇豆和豆腐大豆里的水分(方法925.10)、蛋白質(zhì)(方法950.36)和脂肪(方法963.15)的含量。</p><p> 顏色儀器
23、法測定 豆腐的顏色測定使用美能達(dá)分光光度計CM-508i。并且表示為L*(光亮度),a*(+a*=紅色,-a*=綠色)和b*(+b=黃色,-b*=藍(lán)色)。顏色坐標(biāo)是通過依靠設(shè)備說明書里的方法標(biāo)定。這一說明書的裝備有一脈沖氙弧燈作為光源。一硅光電二極管陣列探測器,其照度/量度范圍直徑為11mm。</p><p> 質(zhì)地口感 質(zhì)地口感是使用用于5kg負(fù)載的質(zhì)構(gòu)分析儀TA-XT21來決定的。生豆腐方塊(4*3*1
24、.5)用一個平盤子(直徑45mm)的圓柱形探頭縮減為原來重量的25%。前測試,測試中和后測試的流速一次為2,1和2mm/s。硬度、內(nèi)聚性、彈性和咀嚼性則可通過布恩方法計算出來。</p><p> 1.4.5 感官評定</p><p> 感官小組是由55人組成的專門小組人員。四個豆腐樣品分別里面含有0(參照組),20,30和40%的羽扇豆成分。豆腐樣品被切成4*2*2cm的方塊并在190
25、℃的油中油炸2min。最后這些樣品要保持溫度50℃以上直至送去進(jìn)行評價。最后豆腐樣品被放置于用一3位數(shù)字標(biāo)記(代表這種樣品)的塑料杯中。專門小組人員被選擇去品嘗有或者沒有甜辣醬的樣品。并且被問到時要描述出對于樣品的感官特點、組織結(jié)構(gòu)、風(fēng)味和整體的可接受性。另被分開帶有編碼的生豆腐樣品(沒有進(jìn)行油炸過的)則被用作顏色測定。專門小組人員被安排到去觀察生豆腐樣品,并記錄下他們喜歡的顏色。沒一個樣品,專門小組人員都會用九點喜好程度來記錄下他們的
26、喜歡或不喜歡。1代表極度不喜歡,2代表非常不喜歡,3代表中度不喜歡,4代表稍微不喜歡,5代表不喜歡也不討厭,6代表稍微喜歡,7代表中度喜歡,8代表非常喜歡,9代表極度喜歡。</p><p> 1.4.6 數(shù)據(jù)分析</p><p> 數(shù)據(jù)分析則使用數(shù)據(jù)分析統(tǒng)計根據(jù)應(yīng)用教程version14.0。單因素方差分析接著被應(yīng)用于杜克顯著性差異實驗中來決定在處理方法中的不同之處。由于感官評價數(shù)據(jù)是
27、非參數(shù)性的,因此可以使用Kruskil-Wallis測試來做數(shù)據(jù)分析。以數(shù)據(jù)表示的意義確定在p≤0.05。</p><p><b> 1.5 結(jié)果與討論</b></p><p> 1.5.1 羽扇豆和大豆的含量</p><p> 羽扇豆和大豆的蛋白質(zhì)和脂肪含量在實驗中的使用情況如表二所示。可知大豆比羽扇豆具有更高的蛋白質(zhì)和脂肪含量。大豆里
28、的蛋白質(zhì)含量相比其高出了5%;然而,脂肪含量更是高于羽扇豆大概12%。這些結(jié)果是相比于其他一些的了。</p><p> 表2 實驗中所用到的羽扇豆和大豆的蛋白質(zhì)與脂肪含量</p><p> 1.5.2 豆腐的產(chǎn)量和水分含量</p><p> 羽扇豆的添加會對豆腐產(chǎn)量產(chǎn)生消極的影響。表3中記錄了伴隨著羽扇豆成分的增加,新鮮豆腐的產(chǎn)量會有明顯的下降(p<0.05)
29、。Ho等人在1995年做了一份類似的羽扇豆添加到豆腐中使產(chǎn)量下降的報告。有羽扇豆成分的豆腐樣品具有更低的水分含量。當(dāng)羽扇豆的添加量≥30%時制作出來的豆腐樣品會比參照組(表4所示)具有明顯更低的水分。這是由于羽扇豆的保水能力和大豆蛋白的不一樣。它實際是由于干重豆腐自由產(chǎn)量顯示生產(chǎn)量減少率小于另外的新鮮豆腐產(chǎn)量(如表3所示)。統(tǒng)計分析顯示出羽扇豆的添加量達(dá)50%時豆腐產(chǎn)量里的自由水分含量并沒有明顯不同。</p><p&
30、gt; 第二個由于羽扇豆成分的增加使得豆腐產(chǎn)量下降的原因是這會改變大豆和羽扇豆籽其外殼在其中的產(chǎn)量。藍(lán)羽扇豆的外殼成分可占23%。然而,大豆的僅占10%。干豆腐的產(chǎn)量計算是基于出去外殼的羽扇豆和大豆得出,實驗顯示出羽扇豆添加量達(dá)50%時產(chǎn)量并沒有明顯不同。另外一個原因隨羽扇豆添加增加導(dǎo)致豆腐產(chǎn)量下降是羽扇豆豆奶具有較高的Ph(保持有8.5),這可能會影響到凝固過程。Tay等人在2006年提出在較低的Ph值下更有利于趨使凝固劑形成更均勻
31、穩(wěn)固的豆腐。</p><p> 當(dāng)羽扇豆占50%時所得的新鮮豆腐樣品的產(chǎn)量(212/100g大豆)相比參照組所得(306/100g大豆)的產(chǎn)量和Mujoo等人在2003年報告所得的產(chǎn)量(269-343/100g大豆)的都要少,然而卻大體上要比韓國好和加拿大大豆品種的產(chǎn)量150-200/100g大豆的要高。在羽扇豆占60%的新鮮豆腐產(chǎn)量則會和以上品種的大豆所得產(chǎn)量一樣多。類似于各種的大豆,各式的羽扇豆也會有不同的
32、豆腐產(chǎn)量。另外一些的各種羽扇豆也能比在這次實驗的所用品種生產(chǎn)出更高的產(chǎn)量的豆腐。在各種不同的羽扇豆中找出它們所得豆腐產(chǎn)量的不同則需要更多的研究。</p><p> 1.5.3 蛋白質(zhì)和脂肪含量</p><p> 豆腐樣品中蛋白質(zhì)和脂肪含量如表4所示,其中所有有添加羽扇豆所制得的豆腐樣品的蛋白質(zhì)成分都明顯(p<0.05)低于100%大豆豆腐樣品的(參照組)。其中100%大豆豆腐蛋白質(zhì)成分
33、為64.9%,遠(yuǎn)遠(yuǎn)高于參照文獻(xiàn)所給的值,介于54.6—58.2%(折干計算)之間。大豆豆腐樣品蛋白質(zhì)成分的改變是由于各種的因素,例如豆腐制備方法和大豆品種。而羽扇豆添加量的增加使得豆腐蛋白質(zhì)成分的減少主要是由于原本羽扇豆就相比大豆具有較低的蛋白質(zhì)成分。</p><p> 含有羽扇豆的豆腐中蛋白質(zhì)成分的提高可以通過優(yōu)化加工條件來實現(xiàn),尤其是蛋白質(zhì)的凝固條件。Zee等人在1988年闡述了由蠶豆制得的豆腐的蛋白質(zhì)減少
34、了24%,然而卻比大豆制得的豆腐蛋白質(zhì)含量高50%,這主要是由于蠶豆豆腐制作中蛋白質(zhì)損失較少。</p><p> 所有含有羽扇豆的豆腐樣品中的脂肪含量相比于參照組(表4所示)的油明顯減少。脂肪含量從參照樣品中的29.2%減少到當(dāng)羽扇豆含50%的16.8%(折干計算)。羽扇豆豆腐的脂肪含量要低于大豆豆腐中的是我們所期望得到的結(jié)果,這是由于羽扇豆原本就比大豆具有更低的脂肪含量。從羽扇豆豆腐相比于大豆豆腐具有更低的脂
35、肪含量看出,羽扇豆豆腐將是符合高蛋白低脂肪健康膳食的一個很好的選擇。</p><p> 表3不同水平羽扇豆添加對豆腐產(chǎn)量的影響</p><p> 表4含羽扇豆的豆腐樣品中水分、蛋白質(zhì)和脂肪含量的不同水平</p><p> 1.5.4 顏色測定</p><p> 豆腐樣品的顏色坐標(biāo)L*,a*和b*的平均值如表5所示。結(jié)果表明當(dāng)P<0.0
36、5時羽扇豆的添加會明顯影響到顏色,主要是由于b*的改變。當(dāng)P>0.05時所有豆腐樣品中的L*沒有明顯的不同。當(dāng)羽扇豆添加量未50%時a*同樣沒有明顯的不同;然而,b*代表了黃色,伴隨著羽扇豆添加量的增加而明顯增加。原參照樣品的b*為9.0,但當(dāng)羽扇豆添加量為50%和60%時,其b*上升到17.4。由于羽扇豆粉末是黃色的,因此黃色值的上升是期望所得的。羽扇豆的添加生產(chǎn)出了光滑柔軟的白色到淡淡黃色的豆腐。通常認(rèn)為白色、乳脂色白色或者淡黃色是
37、豆腐特點中所希望具有的顏色。</p><p> 1.5.5 組織結(jié)構(gòu)</p><p> 豆腐適合的組織結(jié)構(gòu)在其一系列的質(zhì)量和消費者可接受度中扮演了一個很重要的角色。組織結(jié)構(gòu)的外形分析結(jié)果如表6所示。有羽扇豆添加制成的豆腐中得到了我們所希望的特點—具有內(nèi)聚性和光滑組織結(jié)構(gòu)。結(jié)果表明參照組和羽扇豆添加組在硬度上并無明顯的不同。報告表明豆腐的硬度與水分含量相關(guān)。通常,水分含量越高的豆腐越柔軟
38、,相反則結(jié)構(gòu)越緊密和具有更高的硬度。然而,我們的結(jié)果顯示出在P大于0.05時,羽扇豆的添加能降低豆腐的水分含量卻對硬度無任何明顯的影響。</p><p> 內(nèi)聚性是量度一個產(chǎn)品有多經(jīng)受得住第二次的變形,這是與第一次的變形有關(guān)。結(jié)果顯示經(jīng)過所有處理步驟制成的豆腐具有相似的內(nèi)聚性,在0.81-0.83之間。在P>0.05時,羽扇豆豆腐和大豆豆腐其內(nèi)聚性并沒有明顯不同。</p><p> 彈
39、性是表明一個產(chǎn)品在第一次制壓變形后的物理反彈能力又多強。結(jié)果表明在P>0.05時彈性在所有處理組中并無明顯不同(如表6所示)。</p><p> 咀嚼性(硬度*內(nèi)聚性*彈性)在這一研究中是被測的一項。這是由于高咀嚼性在豆腐中是不希望得到的。相比于參照組,咀嚼性并沒有受羽扇豆添加的影響。(表6所示)</p><p> 組織結(jié)構(gòu)的特征中沒有一個能證明在參照組和羽扇豆添加組的豆腐用品中有何明
40、顯不同。結(jié)果表明羽扇豆添加量達(dá)到60%時對豆腐組織特點并無影響。</p><p> 1.5.6 感官評價</p><p> 一共55人的專門小組人員參加了感官評價。生豆腐樣品外觀的感官分?jǐn)?shù)在5.7-6.8之間。羽扇豆的添加可以改善外觀并且在30%和40%的樣品中豆腐的外觀是最好的(表7所示)。數(shù)據(jù)表明在含有30%和40%羽扇豆的油炸豆腐樣品比大豆豆腐樣品的外觀受歡迎得多。</p&
41、gt;<p> 通過感官分析來評價組織結(jié)構(gòu),表明羽扇豆的添加量是沒有多大影響的(如表7所示)。這一結(jié)果類似于結(jié)構(gòu)組織測量儀器的方法所獲得的結(jié)果。表明了所有豆腐樣品外表結(jié)構(gòu)屬性特征(硬度、內(nèi)聚性、彈性、咀嚼性)并沒有明顯的不同。羽扇豆的添加量在40%時制作的樣品在其組織結(jié)構(gòu)、風(fēng)味和整體可接受水平上的感官特點評價上所得的分?jǐn)?shù)幾乎是一樣的。然而有40%加入的羽扇豆制備所得的生豆腐得到的分?jǐn)?shù)較少。這可能是由于高濃度的羽扇豆賦予了
42、豆腐的黃色。但是40%含量的羽扇豆制成的豆腐經(jīng)油炸后卻相似于其他的,這反映在外觀的分?jǐn)?shù)上。</p><p> 大豆豆腐(參照組)和羽扇豆豆腐(40%的添加量)在風(fēng)味及整體可接受度上并無明顯不同。風(fēng)味及整體可接受性的平均分?jǐn)?shù)是6,表明所有樣品經(jīng)評估都高于平均值。研究發(fā)現(xiàn)55人的專門小組人員四分之一的人認(rèn)為羽扇豆的添加量在40%時整一個可接受水平上分?jǐn)?shù)是最高的。</p><p> 表5羽扇
43、豆豆腐在色度上的不同水平</p><p> 表6羽扇豆豆腐里的在不同水平上的水分含量</p><p> 表7羽扇豆油炸豆腐樣品在不同水平上的感官特點</p><p><b> 1.6 結(jié) 論</b></p><p> 羽扇豆在豆腐生產(chǎn)中可以替代40%大豆的量。當(dāng)添加量在≤40%時豆腐的組織結(jié)構(gòu)成分(硬度、內(nèi)聚性、
44、彈性、咀嚼性)和組織結(jié)構(gòu)、風(fēng)味和整體可接受性的感官水平上并無任何影響。但是,生豆腐顏色的可接受性在40%水平上有明顯的下降。通常,羽扇豆的添加量會使脂肪含量下降,而沒有影響它的感官可接受性。在衡量豆腐產(chǎn)品使用羽扇豆的局限性和優(yōu)點之后,得出了羽扇豆的添加量在40%時對其質(zhì)量包括感官可接受性并沒有重要的改變。由于羽扇豆的成本幾乎是大豆成本的一半,那么將羽扇豆添加到豆腐中則可實現(xiàn)在提高營養(yǎng)價值的基礎(chǔ)上又能合理節(jié)省費用開支。</p>
45、<p><b> 2 外文文獻(xiàn)原文</b></p><p> THE DEVELOPMENT AND SENSORY ACCEPTABILITY OF LUPIN-BASED TOFU</p><p> V. JAYASENA1, W.S. KHU and S.M. NASAR-ABBAS</p><p> Food Sc
46、ience and Technology, School of Public Health</p><p> Curtin University of Technology</p><p> GPO Box U1987, Perth, WA 6845, Australia</p><p> Received for Publication March 6, 2
47、008</p><p> Accepted for Publication October 28, 2008</p><p><b> ABSTRACT</b></p><p> The effect of lupin substitution on quality and sensory acceptability of tofu wa
48、s investigated. Tofu samples were prepared using a standard method by substituting lupin at 0, 20, 30, 40, 50 and 60% for soybean. Yield, chemical composition (moisture, protein and fat contents), texture, color and sens
49、ory characteristics of the product were assessed. The yield, protein and fat con- tents decreased with the increase in lupin concentration. On fresh basis, the yield decreased from 306 g to 200 g/100 </p><p>
50、; Results of sensory evaluation showed that lupin substitution up to 40% had no effect on texture, flavor and overall acceptability of tofu samples. Lupin substitution of 30–40% improved the appearance of deep-fried tof
51、u samples. This study revealed that lupin can be substituted up to 40% for soybean in tofu manufacturing without significant changes in quality and acceptability.</p><p> PRACTICAL APPLICATIONS</p>&
52、lt;p> Lupin has comparable nutritional and functional properties to soybean. Lupin can be used to replace soybean in a number of food products including tofu. In comparison with soybean, lupin has lower fat content,
53、whereas, its protein content is comparable. The fat content of tofu can be reduced by lupin substitution without affecting its sensory acceptability. A tofu with lesser fat but comparable protein contents will be a healt
54、hy alternative to the normal tofu and could be a great choice for low </p><p> INTRODUCTION</p><p> Lupin has been used as human food and livestock feed for many centu- ries. It has been used
55、as food across the Mediterranean for over 3000 years (Wasche et al. 2001). Australian sweet lupin (Lupinus angustifolius) is the most popular lupin grown in Australia – the world’s largest producer and significant
56、 exporter of lupins (Anon 2006). It is used mainly for stockfeed and only a small proportion is used for human consumption (Kyle 1994; Petterson and Fairbrother 1996; Jayasena and Quail 2</p><p> Tofu, a h
57、ighly nutritious gel-like food product manufactured from soybean, is commonly consumed as a traditional food in many Asian countries. Tofu is considered as an excellent food because it is rich in high-quality (good balan
58、ce of amino acids) proteins with better digestibility (Liu 1999; Read 2002). The effects of incorporation of other legumes have been studied as an alternative to soybean for tofu production such as peanut (Diarra et al
59、. 2005), faba bean (Zee et al. 1988), field pea (Ge</p><p> Previous studies suggest that soybean can be replaced with up to 30% of lupin in tofu (Hung et al. 1986; Ho 1995). However, limited studies have b
60、een carried out on the physical characteristic, nutritional composition and sensory acceptability of lupin-substituted tofu. The main objective of this study was to determine the maximum amount of lupin that can be subst
61、ituted for soybean in tofu production without affecting the physical and sensory characteristics.</p><p> MATERIALS AND METHODS</p><p> Soybean was purchased from a local supermarket. The Midw
62、est Devel- opment Commission in WA supplied Australian sweet lupin (L. angustifolius) for the study. Purified calcium sulphate(CaSO4·2H2O; analytical reagent)and sodium hydroxide(NaOH; analytical reagent) were obt
63、ained from Chem- Supply. Sodium bicarbonate (baking soda) was obtained from McKenzie’s(Ward McKenzie Pty Ltd. Victoria, Australia). A total of six treatments(Table 1) with three replicates each were used in the study.&l
64、t;/p><p> Soy Tofu Preparation</p><p> Soybeans (250 g) were washed and soaked in tap water (bean : water,1:3 w/v) for 12 h at room temperature (?25C). The soaked beans were drained and
65、ground with 2.5 L (10 times the weight of dry beans) warm water (40C) using a kitchen blender (BLR 50, Breville, Sydney, Australia). After grinding, the soybean slurry was filtered through a cheese cloth to extract soymi
66、lk. The soymilk was placed in a pot and boiled with occasional stirring for 10 min followed by cooling down to 75C with cont</p><p><b> TABLE 1.</b></p><p> FORMULATIONS USED FOR
67、 TOFU PREPARATION WITH LUPIN SUBSTITUTION AT DIFFERENT LEVELS</p><p> Coagulant suspension was prepared by dissolving 7.5 g calcium sulphate(3% of dry bean weight) in 20 mL hot water (75C). The prepa
68、red coagulant was added to the warm soymilk and stirred using a kitchen mixer (Pulsar MP30, Black & Decker, Mooroolbark, Victoria, Australia) for 10s. The mixture was allowed to stand for 30 min for protein coagul
69、ation. After 30 min, the curd was transferred to a tofu tray (22 cm *15 cm *12.5 cm) lined with cheese cloth. The cheese cloth was folded over the top and </p><p> Lupin Soy Tofu Preparation</p><
70、p> Whole lupin beans (250 g) were washed thoroughly and were soaked in 0.5% sodium bicarbonate solution (bean:water 1:3, w/v) for 12 h at room temperature (25C). Sodium bicarbonate was added to soften the seed
71、coat and to reduce the powdery texture of the resulting tofu (Ho 1995). The soaked bean were drained and ground with 2.5 L (10 times the weight of dry bean) warm water (40C) for 2 min using a kitchen blender (BLR 50, Bre
72、ville). After grinding,the lupin slurry was placed in a mixing bowl</p><p> Physicochemical Analysis</p><p> Yield. The tofu yield was calculated on the basis of the weight of pressed tofu ob
73、tained from 250 g beans and expressed as weight of tofu (g/100 g raw bean). Tofu yield on dry basis was calculated by excluding the moisture content; whereas, tofu yield on dehulled beans basis was calculated by exclud-
74、ing the weights of testa of beans (10% for soybean and 23% for lupin) (Circle and Smith 1978; Petterson and Mackintosh 1994b).</p><p> Moisture, Protein and Fat Contents. Association of Official Analytical
75、 Chemists (AOAC) International (2000) methods were used to determine the moisture (method 925.10), protein (method 950.36) and fat (method 963.15) contents of the lupin and soybean used in the experiment and the tofu sam
76、ples.</p><p> Instrumental Color Measurement. Tofu color was measured using Minolta spectrophotometer CM-508i (Minolta Co. Ltd., Azuchi-machi 2-chome, Chuo-ku, Osaka, Japan) and expressed as L* (light
77、ness), a*(?a* redness, ?a*greenness) and b* (?b* yellowness,?b* blueness) color coordinates according to the methods specified by the equipment manual. The instrument was equipped with a pulsed xenon arc lamp as light so
78、urce, a silicon photodiode array detector and has the illumination/ measurement area o</p><p> Texture. Texture was determined using TA-XT2I texture analyzer (Stable Micro Systems, Godalming, UK) fitt
79、ed with a 5 kg load. Raw tofu cubes (4 *3 *1.5) were compressed twice to 25% of its original height with a cylindrical probe fitted with a flat plate (45 mm diameter). The pre-test, test and post-test speeds were set to
80、 2, 1 and 2 mm/s, respectively. Hardness, cohesiveness, springiness and chewiness were calculated according to Bourne(2002).</p><p> Sensory Evaluation</p><p> The sensory panel was consi
81、sted of 55 panelists. Four tofu samples, prepared by incorporating 0 (control), 20, 30 and 40% lupin, were selected for sensory evaluation. Tofu samples were cut into cubes (4 * 2 * 2 cm) and deep fried at 190C for
82、 2.5 min. The samples were kept warm in an oven at 50C until served. Tofu samples were placed in plastic cups coded with a three-digit number to represent the sample. Panelists were given the option of tasting sa
83、mples with or without sweet</p><p> Statistical Analysis</p><p> Data were analyzed using SPSS for Windows, version 14.0 (SPSS Inc., Chicago, IL). One-way analysis of variance (anova) was ap
84、plied followed by the Tukey’s honestly significant difference test to determine differences between the treatments. Because sensory evaluation data was non-parametric, Kruskil–Wallis test was used for data analysis.
85、 Statistical significance was established at P≤0.05.</p><p><b> TABLE2.</b></p><p> PROTEIN AND FAT CONTENTS OF LUPIN AND SOYBEAN</p><p> USED IN THE EXPER
86、IMENT</p><p> Results are expressed as means±standard deviation.</p><p> RESULTS AND DISCUSSION</p><p> Contents of Lupin and Soybean</p><p> The results for
87、protein and fat contents of lupin and soybean used in the experiment are presented in Table 2. Soybean had higher protein and fat contents than those of lupin.Protein content of soybean was about 5% higher; whereas, fat
88、 contents were about 12% more than that of lupin beans. The results were comparable with those of others (Augustin and Klein 1989; Petterson and Mackintosh 1994a; Erbas et al. 2005).</p><p> Yield and Mo
89、isture Content of Tofu</p><p> Lupin incorporation had a negative effect on tofu yield. A significant decrease (P < 0.05) in fresh tofu yield was recorded with the increase in lupin substitution (Table 3).
90、Ho (1995) reported a similar decrease in the yield when lupin was incorporated into tofu. There could be two main reasons for lower yield of lupin incorporated tofu. One could be the lower moisture contents of lupin-inco
91、rporated tofu samples.Tofu amples prepared by incorporating 30% lupin had significantly lower moisture c</p><p> The second reason for the decrease in tofu yield with increased lupin substitution</p&
92、gt;<p> could be the difference in hull proportion in soybean and lupin seeds. Australian Sweet Lupin (L. angustifolius) has 23% hull (Petterson and Mackintosh 1994b); whereas, soybean has 10% hull (Circle and Sm
93、ith 1978). Dry tofu yield calculated on the basis of dehulled lupin and soybean showed no significant difference up to 50% lupin incorporation (Table3).Another reason for the decrease in tofu yield with increasing lupin
94、substitution might be the high pH of lupin milk (maintained at 8.5) that aff</p><p><b> TABLE 3</b></p><p> YIELD OF TOFU SAMPLES PREPARED WITH LUPINS UBSTITUTION AT DIFFE
95、RENT LEVELS</p><p> Results are expressed as means±standard error of measurement.</p><p> Means with different superscripts within a column are significantly different (P≤0.05).</p&
96、gt;<p><b> TABLE 4.</b></p><p> MOISTURE, PROTEIN AND FAT CONTENTS OF TOFU SAMPLES PREPARED WITH LUPIN SUBSTITUTION AT DIFFERENT LEVELS</p><p> Results are expressed as mea
97、ns±standard error of measurement.</p><p> Means with different superscripts within a column are significantly different (P≤0.05).</p><p> The fresh tofu yield of 50% lupin-substituted sa
98、mples (212 g/100 g bean) was less than the control (306 g/100 g bean) and the yield (269–343 g/100 g bean) reported by Mujoo et al. (2003). However, the tofu yield was substan- tially higher than 150–200 g/100 g bean re
99、ported for some Korean (Noh et al. 2005; Yoon and Kim 2007) and Canadian (Abd Karim et al. 1999) soybean cultivars. At 60% lupin substitution, the fresh tofu yield was equal to that of above reported soybean cultivars. S
100、imilar to so</p><p> Protein and Fat Contents</p><p> Protein and fat contents of tofu samples are given in Table 4. Protein contents of all lupin incorporated tofu samples were significantly
101、(P<0.05) lower than the 100% soy tofu sample (control). The protein content (64.9%) of 100% soy tofu was quite higher than the values reported in literature, which ranged from 54.6–58.2% on dry basis (Ho 1995; Cai and Ch
102、ang 1998; No and Meyers 2004; Obatolu 2008). The variation in protein content of soy tofu sample might be due to various factors such as the </p><p> The protein content of lupin-containing tofu might be i
103、mproved by opti- mizing the processing conditions, especially protein coagulation conditions. Zee et al. (1988) showed that tofu prepared from faba bean, having 24% less protein contents compared with soybean, produced
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2010年--外文翻譯--羽扇豆豆腐的發(fā)展及其感官的可接受度的研究
- 2010年--外文翻譯--羽扇豆豆腐的發(fā)展及其感官的可接受度的研究.DOC
- 2010年--外文翻譯--羽扇豆豆腐的發(fā)展及其感官的可接受度的研究.doc
- 2010年--外文翻譯--羽扇豆豆腐的發(fā)展及其感官的可接受度的研究(英文).PDF
- 2010年--外文翻譯--羽扇豆豆腐的發(fā)展及其感官的可接受度的研究(英文).pdf
- [雙語翻譯]--外文翻譯--羽扇豆豆腐的發(fā)展及其感官的可接受度的研究(英文)
- [雙語翻譯]--外文翻譯--羽扇豆豆腐的發(fā)展及其感官的可接受度的研究中英全
- 2010年--食品科學(xué)與工程外文翻譯--羽扇豆豆腐的發(fā)展及其感官的可接受度的研究
- [雙語翻譯]--食品科學(xué)與工程外文翻譯--羽扇豆豆腐的發(fā)展及其感官的可接受度的研究
- 說謊的可接受度研究.pdf
- 羽扇豆籽蛋白提取及其抗氧化肽的研制.pdf
- 漢英公示語翻譯的可接受性研究.pdf
- 羽扇豆屬angustifolius l.的生物堿提取液成分分析和抗菌活性[外文翻譯]
- 跨文化交際與翻譯的可接受性.pdf
- 翻譯中文化傳遞的可接受性.pdf
- 羽扇豆醇對肝癌細(xì)胞的抑制作用及其機制研究.pdf
- 羽扇豆懷特酮的抗炎活性評價與機制研究.pdf
- 含羽扇豆酮藥材資源的評價及羽扇豆酮改善2型糖尿病大鼠胰島素抵抗作用、機制研究.pdf
- 羽扇豆醇對人肝癌細(xì)胞Wnt通路影響的研究.pdf
- 刑事裁判的可接受性研究.pdf
評論
0/150
提交評論