

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、華中科技大學(xué)碩士學(xué)位論文壽命分布中的異常值檢驗(yàn)方法研究姓名:肖浩申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):概率論與數(shù)理統(tǒng)計(jì)指導(dǎo)教師:劉次華20041026AbstractIn reliability analyse, the life of many types of products, such as electronic de-vices and components, are usually described by exponential dis
2、tribution, Weibulldistribution, extreme value distribution, lognormal distribution, etc. But becauseof various kinds of reasons, a few unusual data may enter into the sample of lifeexperiment, as certainly will impose ne
3、gative influence on our study, even will leadto mistaken conclusion. So it becomes a very important link in data processingto identify and reject outliers in sample. This paper goes on deep research on theoutlier tests f
4、or several common life distributions. Based on different ideas, severaleffective methods are proposed from different angles.Exponential distribution’s no-memory property has convenient applications inMathematics. Therefo
5、re, People are glad to assume that sample has exponentialdistribution. Since Epstein and Sobel finished their famous work of statistical anal-ysis for life data following exponential distribution, in the beginning of 195
6、0s, expo-nential distribution began to be put into practice extensively. First of all, by meansof Monte Carlo and Bayesian Methods, this paper carry on search on the problemof outliers in an Exponential Sample, and prese
7、nt a new Bayesian test for outliersbased on the noninformative prior distribution. The method adopts a new idea: testonly uses middle data, data located in both ends are discarded, then test goes on se-quentially from mi
8、ddle to bottom. Simulation result indicates it is relatively robust,can overcome the masking effect effectively. It is Weibull distribution that usedextensively most in life distributions. The extreme value distribution
9、has a simplelogarithm relation with Weibull distribution. This paper is based on some existingtheoretical foundation, uses many mathematics skills, moves the same method ofinspecting outliers to these two kinds of distri
10、butions, and derives the approximatedistribution functions of test statistics.Secondly, various kinds of test methods of normal distribution with fine efficiencyhave already been proposed. How to exploit this sum of exis
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 觀測(cè)數(shù)據(jù)的異常值統(tǒng)計(jì)檢驗(yàn)方法研究.pdf
- Weibull分布場(chǎng)合雙向異常值的檢驗(yàn).pdf
- weibull分布場(chǎng)合雙向異常值的檢驗(yàn)
- 面板數(shù)據(jù)模型的異常值檢驗(yàn).pdf
- 非正態(tài)分布的檢驗(yàn)方法及應(yīng)用研究
- 非正態(tài)分布的檢驗(yàn)方法及應(yīng)用研究
- 空氣中臭氧的檢驗(yàn)方法
- 空氣中臭氧的檢驗(yàn)方法
- 空氣中臭氧的檢驗(yàn)方法
- 風(fēng)電機(jī)組運(yùn)行數(shù)據(jù)中異常值的檢測(cè)方法.pdf
- 二項(xiàng)分布資料假設(shè)檢驗(yàn)方法的比較研究.pdf
- 紙箱的檢驗(yàn)方法
- 基于MBD的檢驗(yàn)方法研究.pdf
- 電器檢驗(yàn)方法
- qc檢驗(yàn)方法
- 油漆檢驗(yàn)方法
- 焊接檢驗(yàn)方法
- 檢驗(yàn)方法目錄
- 焊接檢驗(yàn)方法
- 乳粉檢驗(yàn)方法
評(píng)論
0/150
提交評(píng)論