版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Counting moving people in crowded scenes is in high demand in videosurveillance applications such as controlling traffic flow, schedulingpublic transportations, counting customers in markets, indexing multimedia archives
2、, and detection of overcrowded places.Among theavailable techniques, trajectory-clustering-based methods, and mapbased methods have shown good performances in counting people indensely crowded scenes.The trajectory-clust
3、ering-based approachestry to detect every independent motion by clustering feature-pointson people tracked over time, and the map-based approaches generallysubtract the background, and then map the number of people to so
4、mefeatures such as foreground area, texture features or edge count.However, existing approaches still have some limitations and difficulties inproducing accurate results.
The trajectory-clustering-based approaches f
5、all into trouble in complex scenes, such as with the close proximity of moving people, freelymoving parts of people, and different object size in different locations of the scene.The map-based approaches suffer from inac
6、curateforeground/background segmentations, erroneous image features, andrequire large amount of training data to capture the wide variationsin crowd distribution.In this thesis, two approaches are developed forcrowd coun
7、ting.A trajectory-clustering-based approach, combiningvelocity and location-specific spatial clues in trajectories, is proposedto cope with limitations of existing trajectory-clustering-based approaches.Also, a new map-b
8、ased method, using motion statisticsof feature-points, is proposed to accurately estimate the number ofmoving people in crowds.
The proposed trajectory-clustering-based approach firstly extracts thevelocities of the
9、 trajectories over their life-time.To alleviate confusionaround the boundary regions between close objects, extracted velocity information is utilized to eliminate unreal-world feature-points onobjects' bonndaries.Then,
10、a function is introduced to measure thesimilarity of the trajectories integrating both of the spatial and thevelocity clues.This function is employed in the Mean-Shift clusteringprocedure to reduce the effect of freely m
11、oving parts of the people.To address the problem of various object sizes in different regions ofthe scene, we suggest a technique to learn the location-specific sizedistribution of objects in different locations of a sce
12、ne.The experimental results show that our proposed method achieves a good performance.Compared with other trajectory-clustering-based methods,it decreases the counting error rate by about 10%.
The second proposcd ap
13、proach, the map-bascd one, utilizes motioninformation of feature-points to estimate the number of moving people in a crowd.Simple feature-points are tracked within the sceneand the amount of moving feature-points is used
14、 as a clue to theforeground area, which can provide a coarse estimate of crowd size.Moreover, motion trajectories of feature-points are utilized to capturesome clues about the level of occlusion in the scene.Two statisti
15、cal features are extracted that are highly correlated with the amount(level) of occlusions in a crowd.Finally, a classifier is trained tomap the extracted features to the number of people.The proposedapproach is evaluate
16、d on a large pedestrian dataset.The experimental results and comparisons with existing approaches showy that theproposed method achieves a superior performance.Furthermore, theproposed approach is improved by using local
17、 features (local with respect to the groups of people, obtained by using a clustering scheme)instead of holistic features from the scene.This system is shown tobe quite robust and generalizable, as it is capable of extra
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于卷積神經(jīng)網(wǎng)絡(luò)的人群計(jì)數(shù)算法研究.pdf
- 基于深度學(xué)習(xí)的人群密度估計(jì)及稠密人群計(jì)數(shù)的研究.pdf
- 基于關(guān)節(jié)特征點(diǎn)的人體運(yùn)動(dòng)跟蹤與分析.pdf
- 基于情緒感染模型的人群運(yùn)動(dòng)仿真研究.pdf
- 基于視頻分析的人群仿真方法研究.pdf
- 基于視頻圖像的人臉特征點(diǎn)實(shí)時(shí)檢測(cè)方法研究.pdf
- 基于深度信息的人體運(yùn)動(dòng)識(shí)別方法研究.pdf
- 基于視頻的人群異常檢測(cè)方法研究.pdf
- 基于角點(diǎn)特征的人群聚集事件與行為檢測(cè)算法的研究.pdf
- 基于SURF特征的人群數(shù)量檢測(cè)算法研究.pdf
- 基于圖像處理的人群密度與運(yùn)動(dòng)估計(jì)研究.pdf
- 基于顏色特征的車輛計(jì)數(shù)方法研究.pdf
- 基于流體仿真的人群運(yùn)動(dòng)模擬基礎(chǔ)算法研究.pdf
- 擁擠情況下的人群計(jì)數(shù)和短時(shí)人群流量預(yù)測(cè).pdf
- 基于特征點(diǎn)描述的人臉識(shí)別算法研究.pdf
- 基于特征的人臉檢測(cè)方法.pdf
- 基于特征點(diǎn)空間信息分布直方圖的匹配方法研究.pdf
- 中產(chǎn)階級(jí)的人群特征
- 基于SVM的人臉特征定位方法研究.pdf
- 基于密集軌跡特征的人體運(yùn)動(dòng)識(shí)別研究.pdf
評(píng)論
0/150
提交評(píng)論