

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、y79UG0‘分類號:I型!垡:曼密級:j蘭丑I_UDC:占皇f三學(xué)號:0__20425東南大掌碩士學(xué)位論文基于數(shù)據(jù)融合的語音情感分析與識別研究生姓名:夔麴塹:導(dǎo)師姓名:壑力夔攮申請學(xué)位級別王堂亟論文提交日期至壘Q!生圭旦皇£旦學(xué)位授于單位壅直盔堂答辯委員會主席堇童寶學(xué)科專業(yè)名稱籃呈皇籃星處堡論文答辯日期呈Q墮笙曼旦!l目學(xué)位授予日期呈坌Q曼生主月4目評閱人剎睦矍鹽2005年3月1日東南大學(xué)碩士學(xué)位論文AbstractSocialper
2、ceptionsandjudgmentsofemotionareubiquitousandaredeemedimportanttohumansurvivalWiththedevelopmentofscience,theprocessingandanalysisofemotionWaSalreadybecameallimlxntantresearchdirectioninthefieldofArtificialIntelligenceIn
3、traditionalspeechs刪processing,thecomputercanonlyrecognizetheinformationaboutsymbol,thehiddeninfmmadourelatedwithemotionandmoodisdroppedwithoutbeennoticedThedevelopmentofspeechemotionalanalysiswillimproveandenhancethecomp
4、uter’Semotionalintelligancetheabilitytecognizeausersaffoctivestates,tobecamemorehumanlike,moreeffectiveandmoreefficientThecontentsinthispaperareincluding:thebuildingandtestingofemotionaldatabasecalculationvalidityestimat
5、ingandclassificationofparamet日semotionalrecogaitinnbased∞datafusionAreviewofthehistoryOfemotiontheoryandthereseat℃hofspeechemotionmin打oducedatfirstinthispaperBasedontheresultscomefromtherese口chwiththephysiologicalpsychol
6、ogysomeclasstllcntionsoftheemotionarelistThebllildingofemotionaldatabaseisoumideredSomedatabasescurrentlybeingusedareOesenbe吐theshortcomingandadvantagefordiffeaentdatabasesarepointedoutBasedOIltheeanalyses,aCMneseemotion
7、alspeechdatableiseoustruetedItincludestheacteddataofwordssentencesandpassagesandsixkindsofemotionsofhappiness,angersurprisesadnessandfearThetestingiscarriedoutusingtheknowledgeof蛔mathematicsandtheaimisdecreasetheintefc∞n
8、ceofsubjectivefactorsPitchformantenergytherateofsix;cchandf1aotaldimensionofspeechwaveandpitchenlwearecalculatedasparametersinspeechemotionalrecognitionThenowmethodofegtlaOtillgmaxilnwnandmininlnnlisintroducedTheoryofthe
9、fuzzyentropyhasbeenusedtomeasmotheuncertaintyofthesevariablesTwokindsofclassifyingmethodtoparametexs躺carriedoutforfusionanalysisAnovelreeo窖丑]iziagmethodofmultidassSVMKNNisproposedbasedmtherelationshipbetweenSVM(SupportVe
10、ctorMachine)andKNNⅨNearestNeighbor)SVMKNNandSynergetienetworkaleadizadforemotionrecognitioninthispapeaTherestdtsthatSVMKNNismoreeffectivelythan‘‘OneAgainstAfi’SVMSynergetienetworkismoreeffectivelythanmodifiedPCA(Principl
11、eComponemAnalysis)areprovedthroughexperimentsRecognizingmethod鋤dfusionalgorithmarecombinedinthispaperThroughcombiningadaptiveweighftlSiORandSVMKNN,mutielassfusionandSyaergetienetworktherateofspeechemotionalrecognitionise
12、nhancedAverageaeceraoyisadvanced446%forfemale,266%formaleInaddition,adaptiveweighfnsimaisprovedmofeeffectivelythanthemethodofmuticlassfusionKeywords:SpeechEmotionReeognitiou,F(xiàn)uzzyEn扛opymuticlassfusionSupportVectorMachine
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于特征選擇與融合的語音情感識別研究與實現(xiàn).pdf
- 基于人臉表情特征與語音特征融合的情感識別研究.pdf
- 基于特征融合的語音情感識別方法的研究.pdf
- 融合面部表情的語音情感識別研究.pdf
- 基于HMM與RBF的語音情感識別.pdf
- 基于Boosting的語音情感識別.pdf
- 基于ANN和GMM融合的語音情感識別方法的研究.pdf
- 基于HMM的情感語音識別.pdf
- 基于面部表情分析的情感語音識別.pdf
- 基于多粒度特征融合的維度語音情感識別方法研究.pdf
- 基于核分析方法的語音情感識別的研究.pdf
- 基于語音信號的情感特征選擇與情感識別研究.pdf
- 基于多級分類的語音情感識別.pdf
- 基于SVM的語音情感識別研究.pdf
- 基于特征選擇的語音情感識別.pdf
- 情感語音信號特征分析與識別.pdf
- 基于增量和集成學(xué)習(xí)的語音情感融合識別方法研究.pdf
- 基于SVM-CRF多分類器融合的語音情感識別研究.pdf
- 基于HHT的語音情感識別研究.pdf
- 融合人臉表情和語音的雙模態(tài)情感識別研究.pdf
評論
0/150
提交評論